File size: 7,039 Bytes
ce96848
 
 
4e17640
ce96848
 
4e17640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
---
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- decoder-only
- nlp
- autoregressive
- rope
- gqa
- rmsnorm
- swiglu
- from-scratch
datasets:
- roneneldan/TinyStories
license: apache-2.0
model-index:
- name: GatorGPT2
  results: []
---

# 🐊 GatorGPT2

**GatorGPT2** is a small, decoder-only Transformer trained from scratch on a subset of **TinyStories** for next-token prediction.  
It uses **RoPE** (rotary positional embeddings), **GQA** (grouped-query attention), **RMSNorm**, and a **SwiGLU MLP**.  
Tokenizer is **tiktoken** with **p50k_base** vocabulary.

> **Repo**: `kunjcr2/GatorGPT2`  
> **Intended use**: research, experimentation, educational demos for training/serving custom LMs

---

## πŸ”§ Architecture

- **Type**: Decoder-only, causal LM  
- **Layers**: `num_hidden_layers = 10`  
- **Hidden size**: `hidden_size = 448`  
- **Heads**: `num_attention_heads = 8` (GQA with 2 KV heads per query group)  
- **FFN**: SwiGLU, `d_ff β‰ˆ 2Γ— hidden_size`  
- **Norm**: RMSNorm (pre-norm blocks)  
- **Positional**: RoPE  
- **Vocab**: `vocab_size = 50,257` (tiktoken p50k_base)  
- **Context length**: `max_position_embeddings = 1024`  
- **Weight tying**: output head tied with token embeddings  
- **Files**:
  - `pytorch_model.bin` (or `model.safetensors`)
  - `config.json` (`model_type: "gator-transformer"`, `auto_map` provided)
  - `modeling_gator.py`, `configuration_gator.py`, `__init__.py`
  - `tokenizer_manifest.json` β†’ `{ "library": "tiktoken", "encoding": "p50k_base" }`

> Custom code is loaded via `trust_remote_code=True`.

---

## πŸ“¦ Install

```bash
pip install torch transformers tiktoken
````

---

## πŸš€ Quickstart (Transformers + tiktoken)

```python
import torch
from transformers import AutoModelForCausalLM
import tiktoken

MODEL_ID = "kunjcr2/GatorGPT2"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Load model (uses custom modeling code)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float32,
).to(DEVICE).eval()

# Tokenizer (p50k_base via tiktoken)
tok = tiktoken.get_encoding("p50k_base")

def generate_greedy(prompt: str, max_new_tokens: int = 64) -> str:
    ids = tok.encode(prompt)
    x = torch.tensor([ids], device=DEVICE)
    for _ in range(max_new_tokens):
        with torch.no_grad():
            out = model(x)
        logits = out["logits"] if isinstance(out, dict) else out.logits
        next_id = int(torch.argmax(logits[0, -1]))
        x = torch.cat([x, torch.tensor([[next_id]], device=DEVICE)], dim=1)
    return tok.decode(x[0].tolist()).replace("<|endoftext|>", "").strip()

print(generate_greedy("Little girl was"))
```

### Temperature-only sampling (no top-k/p)

```python
def generate_temp(prompt, max_new_tokens=64, temperature=0.9):
    ids = tok.encode(prompt)
    x = torch.tensor([ids], device=DEVICE)
    for _ in range(max_new_tokens):
        with torch.no_grad():
            logits = model(x).logits[0, -1] / max(temperature, 1e-6)
        probs = torch.softmax(logits, dim=-1)
        next_id = torch.multinomial(probs, 1).item()
        x = torch.cat([x, torch.tensor([[next_id]], device=DEVICE)], dim=1)
    return tok.decode(x[0].tolist()).replace("<|endoftext|>", "").strip()
```

---

## 🌐 Serving with vLLM (Optional)

```bash
python -m vllm.entrypoints.openai.api_server \
  --model kunjcr2/GatorGPT2 \
  --tokenizer kunjcr2/GatorGPT2 \
  --trust-remote-code \
  --dtype float32 \
  --max-model-len 1024 \
  --host 0.0.0.0 --port 8000
```

Call it:

```bash
curl http://localhost:8000/v1/completions \
  -H "Content-Type: application/json" \
  -d '{"model":"kunjcr2/GatorGPT2","prompt":"Little girl was","max_tokens":64,"temperature":0.9}'
```

---

## πŸ§ͺ Training Summary

* **Data**: `roneneldan/TinyStories` (train split; subset of \~1.5M stories)
* **Objective**: causal LM (next-token prediction), cross-entropy
* **Optimizer**: AdamW (`lr=3e-4`, `weight_decay=0.01`, `eps=1e-8`)
* **Precision**: bf16 autocast on CUDA during forward for speed
* **Batching**: sliding windows via a `FastDataset` (window size e.g. 512, stride 256)
* **Eval**: periodic validation over fixed batches; train loss downsampled to eval steps for plotting
* **Hardware**: intended for A100-class GPUs; also runs on CPU for debug (slow)

> This is a *from-scratch* toy/educational model; quality depends heavily on steps, data cleaned, and schedule. Expect simple, short English generations.

---

## βœ… Intended Use

* Research on small decoder-only Transformers
* Educational demos (training, saving, model hub, vLLM serving)
* Baseline for experimenting with:

  * LoRA/QLoRA, quantization, distillation
  * Attention variants (Flash-Attention, GQA configs)
  * Data curation and scaling laws

**Not** intended for production or safety-critical use.

---

## ⚠️ Limitations & Risks

* Trained on children’s story data β‡’ limited world knowledge & reasoning
* May output incoherent, repetitive, or undesirable text
* No instruction-tuning or RLHF
* Tokenizer is `tiktoken p50k_base` (not a standard HF tokenizer), so examples use `tiktoken` directly

---

## πŸ“ Repo Structure

```
.
β”œβ”€β”€ config.json
β”œβ”€β”€ pytorch_model.bin        # or model.safetensors
β”œβ”€β”€ modeling_gator.py        # custom architecture (RoPE, GQA, RMSNorm, SwiGLU)
β”œβ”€β”€ configuration_gator.py
β”œβ”€β”€ __init__.py
└── tokenizer_manifest.json  # { "library": "tiktoken", "encoding": "p50k_base" }
```

`config.json` includes:

```json
{
  "model_type": "gator-transformer",
  "architectures": ["GatorModel"],
  "auto_map": {
    "AutoConfig": "configuration_gator.GatorConfig",
    "AutoModelForCausalLM": "modeling_gator.GatorModel"
  }
}
```

---

## πŸ“Š Evaluation

No formal benchmarks reported. You can compute loss/perplexity on your own validation subset:

```python
import math, torch
from torch.utils.data import DataLoader, TensorDataset

# ...build a DataLoader of (input_ids, target_ids) pairs...
def eval_loss(model, loader, device="cuda"):
    model.eval(); total, n = 0.0, 0
    with torch.no_grad():
        for x, y in loader:
            x, y = x.to(device), y.to(device)
            logits = model(x).logits
            loss = torch.nn.functional.cross_entropy(
                logits.view(-1, logits.size(-1)), y.view(-1)
            )
            total += loss.item(); n += 1
    return total / max(n,1)

val_loss = eval_loss(model, your_val_loader)
print("val loss:", val_loss, "  ppl:", math.exp(val_loss))
```

---

## πŸ“œ License

**apache-2.0**

---

## πŸ™Œ Acknowledgements

* **TinyStories** dataset by Ronen Eldan et al. (`roneneldan/TinyStories`)
* Community tooling: **PyTorch**, **πŸ€— Transformers**, **tiktoken**, **vLLM**

---

## βœ‰οΈ Citation

If you use this model, please cite this repository:

```bibtex
@software{GatorGPT2_2025,
  author = {Kunj},
  title = {GatorGPT2: a small decoder-only Transformer with RoPE+GQA},
  year = {2025},
  url = {https://huggingface.co/kunjcr2/GatorGPT2}
}
```