See axolotl config
axolotl version: 0.5.2
base_model: google/gemma-2-27b-it
hub_model_id: kweinmeister/gemma-2-27b-it-dolly-15k
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: databricks/databricks-dolly-15k
type:
field_instruction: instruction
field_input: context
field_output: response
val_set_size: 0.05
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: gemma-2-27b-it-dolly-15k
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
output_dir: "/mnt/disks/gcs/training/runs/google--gemma-2-27b-it-20250101-192231/out/"
dataset_prepared_path: "/mnt/disks/gcs/training/datasets"
gemma-2-27b-it-dolly-15k
This model is a fine-tuned version of google/gemma-2-27b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5560
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.2291 | 0.0244 | 1 | 2.1246 |
2.1928 | 0.2683 | 11 | 1.6858 |
1.742 | 0.5366 | 22 | 1.5769 |
1.7213 | 0.8049 | 33 | 1.5560 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.4.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 14,673
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.