l3cube-pune's picture
Update README.md
ca0470e
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers
license: cc-by-4.0
language: kn
widget:
  - source_sentence: ನಮ್ಮ ಪರಿಸರದ ಬಗ್ಗೆ ನಾವು ಕಾಳಜಿ ವಹಿಸಬೇಕು
    sentences:
      - ನಮ್ಮ ಪರಿಸರವನ್ನು ಸ್ವಚ್ಛವಾಗಿಟ್ಟುಕೊಳ್ಳೋಣ
      - ಜಾಗತಿಕ ತಾಪಮಾನವು ಗಂಭೀರ ಸಮಸ್ಯೆಯಾಗಿದೆ
      - ಹೆಚ್ಚು ಮರಗಳನ್ನು ನೆಡಿ
    example_title: Example 1
  - source_sentence: ಕೆಲವರು ಹಾಡುತ್ತಿದ್ದಾರೆ
    sentences:
      - ಜನರ ಗುಂಪು ಹಾಡುತ್ತಿದೆ
      - ಬೆಕ್ಕು ಹಾಲು ಕುಡಿಯುತ್ತಿದೆ
      - ಇಬ್ಬರು ಪುರುಷರು ಜಗಳವಾಡುತ್ತಿದ್ದಾರೆ
    example_title: Example 2
  - source_sentence: ಫೆಡರರ್ ವಿಂಬಲ್ಡನ್ ಪ್ರಶಸ್ತಿ ಗೆದ್ದಿದ್ದಾರೆ
    sentences:
      - >-
        ಫೆಡರರ್ ತಮ್ಮ ವೃತ್ತಿಜೀವನದಲ್ಲಿ ಒಟ್ಟು 20 ಗ್ರ್ಯಾನ್ ಸ್ಲಾಮ್ ಪ್ರಶಸ್ತಿಗಳನ್ನು
        ಗೆದ್ದಿದ್ದಾರೆ 
      - ಫೆಡರರ್ ಸೆಪ್ಟೆಂಬರ್‌ನಲ್ಲಿ ನಿವೃತ್ತಿ ಘೋಷಿಸಿದರು
      - ಒಬ್ಬ ಮನುಷ್ಯ ಒಂದು ಪಾತ್ರೆಯಲ್ಲಿ ಸ್ವಲ್ಪ ಅಡುಗೆ ಎಣ್ಣೆಯನ್ನು ಸುರಿಯುತ್ತಾನೆ
    example_title: Example 3

KannadaSBERT

This is a KannadaBERT model (l3cube-pune/kannada-bert) trained on the NLI dataset.
Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP
A multilingual version of this model supporting major Indic languages and cross-lingual capabilities is shared here indic-sentence-bert-nli

A better sentence similarity model (fine-tuned version of this model) is shared here: https://huggingface.co/l3cube-pune/kannada-sentence-similarity-sbert

More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2304.11434)

@article{deode2023l3cube,
  title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT},
  author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj},
  journal={arXiv preprint arXiv:2304.11434},
  year={2023}
}
@article{joshi2022l3cubemahasbert,
  title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
  author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
  journal={arXiv preprint arXiv:2211.11187},
  year={2022}
}

monolingual Indic SBERT paper
multilingual Indic SBERT paper

Other Monolingual Indic sentence BERT models are listed below:
Marathi SBERT
Hindi SBERT
Kannada SBERT
Telugu SBERT
Malayalam SBERT
Tamil SBERT
Gujarati SBERT
Oriya SBERT
Bengali SBERT
Punjabi SBERT
Indic SBERT (multilingual)

Other Monolingual similarity models are listed below:
Marathi Similarity
Hindi Similarity
Kannada Similarity
Telugu Similarity
Malayalam Similarity
Tamil Similarity
Gujarati Similarity
Oriya Similarity
Bengali Similarity
Punjabi Similarity
Indic Similarity (multilingual)

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


def cls_pooling(model_output, attention_mask):
    return model_output[0][:,0]


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)