rag-topic-model

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("labdmitriy/rag-topic-model")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 5
  • Number of training documents: 201
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 my - for - to - account - payment 13 -1_my_for_to_account
0 refund - nike - my - store - for 35 0_refund_nike_my_store
1 my - the - for - klarna - payment 72 1_my_the_for_klarna
2 email - to - my - account - the 45 2_email_to_my_account
3 card - klarna - it - to - need 36 3_card_klarna_it_to

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: True
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 2.1.3
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.6.1
  • Sentence-transformers: 3.1.1
  • Transformers: 4.45.2
  • Numba: 0.61.0
  • Plotly: 6.0.0
  • Python: 3.11.5
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.