rag-topic-model
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("labdmitriy/rag-topic-model")
topic_model.get_topic_info()
Topic overview
- Number of topics: 5
- Number of training documents: 201
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | my - for - to - account - payment | 13 | -1_my_for_to_account |
0 | refund - nike - my - store - for | 35 | 0_refund_nike_my_store |
1 | my - the - for - klarna - payment | 72 | 1_my_the_for_klarna |
2 | email - to - my - account - the | 45 | 2_email_to_my_account |
3 | card - klarna - it - to - need | 36 | 3_card_klarna_it_to |
Training hyperparameters
- calculate_probabilities: False
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: None
- seed_topic_list: None
- top_n_words: 10
- verbose: True
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 2.1.3
- HDBSCAN: 0.8.40
- UMAP: 0.5.7
- Pandas: 2.2.3
- Scikit-Learn: 1.6.1
- Sentence-transformers: 3.1.1
- Transformers: 4.45.2
- Numba: 0.61.0
- Plotly: 6.0.0
- Python: 3.11.5
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.