Transfusion - VAE
How to use with 𧨠diffusers
from diffusers.models import AutoencoderKL
vae = AutoencoderKL.from_pretrained("lavinal712/transfusion-vae")
Model
This model was trained for 50 (legacy: 7) epochs on ImageNet, COCO and FFHQ (legacy: ImageNet), with training parameters following the original Transfusion paper.
Evaluation
ImageNet 2012 (256x256, val, 50000 images)
Model | rFID | PSNR | SSIM | LPIPS |
---|---|---|---|---|
Transfusion-VAE | 0.408 | 28.723 | 0.845 | 0.081 |
SD-VAE | 0.692 | 26.910 | 0.772 | 0.130 |
COCO 2017 (256x256, val, 5000 images)
Model | rFID | PSNR | SSIM | LPIPS |
---|---|---|---|---|
Transfusion-VAE | 2.749 | 28.556 | 0.855 | 0.078 |
SD-VAE | 4.246 | 26.622 | 0.784 | 0.127 |
Evaluation (legacy)
ImageNet 2012 (256x256, val, 50000 images)
Model | rFID | PSNR | SSIM | LPIPS |
---|---|---|---|---|
Transfusion-VAE | 0.567 | 28.195 | 0.829 | 0.100 |
SD-VAE | 0.692 | 26.910 | 0.772 | 0.130 |
Paper: Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model
Base Code: lavinal712/AutoencoderKL
Training Code: lavinal712/AutoencoderKL/tree/transfusion_vae
- Downloads last month
- 31
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.