Modelos de codificadores
Los modelos de codificadores usan únicamente el codificador del Transformador. En cada etapa, las capas de atención pueden acceder a todas las palabras de la oración inicial. Estos modelos se caracterizan generalmente por tener atención “bidireccional” y se suelen llamar modelos auto-encoding.
El preentrenamiento de estos modelos generalmente gira en torno a corromper de alguna manera una oración dada (por ejemplo, ocultando aleatoriamente palabras en ella) y pidiéndole al modelo que encuentre o reconstruya la oración inicial.
Los modelos de codificadores son más adecuados para tareas que requieren un entendimiento de la oración completa, como la clasificación de oraciones, reconocimiento de entidades nombradas (y más generalmente clasificación de palabras) y respuesta extractiva a preguntas.
Los miembros de esta familia de modelos incluyen:
< > Update on GitHub