NLP Course documentation

NLP چیست؟

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

# پردازش زبان طبیعی
Ask a Question

قبل از اینکه به سراغ مدل‌های ترنسفومر برویم، بیایید نگاهی سریع بیاندازیم به اینکه پردازش زبان طبیعی[^1] چیست و چرا برای ما حائز اهمیت است.

NLP چیست؟

NLP زیرشاخه‌ای از زبان‌شناسی و یادگیری ماشین است که تمرکز آن بر درک همه‌ی جوانب زبان انسان‌ها است. هدف مسائل صرفا درک کلمات بصورت مجزا نیست، بلکه جمله، متن و در مجموع‌ زمینه‌ای است که آن کلمه در آن به کار رفته است.

مسائل متداول NLP بهمراه برخی مثال‌های آن را در این لیست می‌بینید:

  • دسته‌بندی جملات: دریافت احساس نظر، تشخیص هرزنامه بودن یک ایمیل، تشخیص اینکه آیا یک جمله از لحاظ دستور زبانی صحیح است یا نه و اینکه آیا دو جمله منطقا به یکدیگر مرتبط هستند یا نه.
  • دسته‌بندی هر کلمه داخل یک جمله:‌ تشخیص اجزای مختلف دستور زبان در یک جمله (اسم، فعل، صفت) و یا موجودیت‌های نامدار (شخص، موقعیت، سازمان).
  • تولید محتوای متنی:‌ تکمیل یک پیام با متن تولید شده به صورت خودکار و یا تکمیل متنی که جاهای خالی دارد.
  • استخراج پاسخ از یک متن: پاسخ به سوالات با استفاده از اطلاعاتی که در متن زمینه ارائه شده است.
  • تولید متن جدید از یک متن ارائه شده: ترجمه‌ی متون به دیگر زبان‌ها، خلاصه‌سازی متون.

با این حال NLP صرفا به متون نوشتاری محدود نمی‌شود و برای چالش‌های پیچیده‌ی بسیاری در مسائل تشخیص گفتار و بینایی ماشین راه‌حل ارائه می‌کند. برای نمونه می‌توان از تولید متن از یک فایل صوتی و یا تشریح یک تصویر، نام برد.

چرا این مبحث چالش‌برانگیز است؟

کامپیوترها اطلاعات را مانند انسان پردازش نمی‌کنند. برای مثال زمانی که ما جمله‌ای مانند من گرسنه هستم را می‌خوانیم، به سادگی معنای آن را متوجه می‌شویم. همچنین زمانی که دو جمله‌ مانند من گرسنه هستم و من ناراحت هستم را می‌خوانیم، بسادگی می‌توانیم تشخیص دهیم که به چه میزان این دو جمله با یکدیگر تشابه دارند. برای مدل‌های یادگیری ماشین، چنین مسائلی به مراتب سخت‌تر است. متن باید به ‌شیوه‌ای پردازش شود که به مدل امکان یادگیری از آن را بدهد. و با توجه به اینکه زبان پیچیده است، باید در پیاده‌سازی این مدل‌ها بسیار دقت کنیم. تحقیقات بسیاری انجام شده است تا نشان دهند چگونه می‌توان متن را در کامپیوترها مدل کرد. در فصل بعدی به برخی از این شیوه‌ها نگاهی میاندازیم.

[^1]: Natural Language Processing (NLP)

< > Update on GitHub