NLP Course documentation

“编码器”模型

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

“编码器”模型

Ask a Question

编码器模型仅使用 Transformer 模型的编码器部分。在每次计算过程中,注意力层都能访问整个句子的所有单词,这些模型通常具有“双向”(向前/向后)注意力,被称为自编码模型。

这些模型的预训练通常会使用某种方式破坏给定的句子(例如:通过随机遮盖其中的单词),并让模型寻找或重建给定的句子。

“编码器”模型适用于需要理解完整句子的任务,例如:句子分类、命名实体识别(以及更普遍的单词分类)和阅读理解后回答问题。

该系列模型的典型代表有:

< > Update on GitHub