bert-basketball-qa

This model is a fine-tuned version of deepset/bert-base-uncased-squad2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3456
  • Exact: 78.0068
  • F1: 82.8115
  • Total: 15041
  • Hasans Exact: 78.0068
  • Hasans F1: 82.8115
  • Hasans Total: 15041
  • Best Exact: 78.0068
  • Best Exact Thresh: 0.0
  • Best F1: 82.8115
  • Best F1 Thresh: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Exact F1 Total Hasans Exact Hasans F1 Hasans Total Best Exact Best Exact Thresh Best F1 Best F1 Thresh
0.68 0.0265 100 0.5825 75.1479 81.0196 15041 75.1479 81.0196 15041 75.1479 0.0 81.0196 0.0
0.6035 0.0530 200 0.5453 75.5601 81.4615 15041 75.5601 81.4615 15041 75.5601 0.0 81.4615 0.0
0.5286 0.0795 300 0.5200 75.8527 81.4575 15041 75.8527 81.4575 15041 75.8527 0.0 81.4575 0.0
0.5957 0.1060 400 0.4978 76.3978 81.9120 15041 76.3978 81.9120 15041 76.3978 0.0 81.9120 0.0
0.5173 0.1325 500 0.4919 75.9457 81.4362 15041 75.9457 81.4362 15041 75.9457 0.0 81.4362 0.0
0.4847 0.1589 600 0.4845 76.4244 81.9856 15041 76.4244 81.9856 15041 76.4244 0.0 81.9856 0.0
0.4764 0.1854 700 0.4717 76.5441 82.1418 15041 76.5441 82.1418 15041 76.5441 0.0 82.1418 0.0
0.4707 0.2119 800 0.4601 76.8632 82.2239 15041 76.8632 82.2239 15041 76.8632 0.0 82.2239 0.0
0.4725 0.2384 900 0.4577 76.9829 82.3913 15041 76.9829 82.3913 15041 76.9829 0.0 82.3913 0.0
0.4905 0.2649 1000 0.4448 77.1092 82.3780 15041 77.1092 82.3780 15041 77.1092 0.0 82.3780 0.0
0.5156 0.2914 1100 0.4387 77.0826 82.3692 15041 77.0826 82.3692 15041 77.0826 0.0 82.3692 0.0
0.4482 0.3179 1200 0.4300 77.0162 82.2991 15041 77.0162 82.2991 15041 77.0162 0.0 82.2991 0.0
0.4548 0.3444 1300 0.4350 76.9497 82.1747 15041 76.9497 82.1747 15041 76.9497 0.0 82.1747 0.0
0.4344 0.3709 1400 0.4237 77.1957 82.5521 15041 77.1957 82.5521 15041 77.1957 0.0 82.5521 0.0
0.4431 0.3974 1500 0.4237 77.1092 82.4167 15041 77.1092 82.4167 15041 77.1092 0.0 82.4167 0.0
0.4462 0.4238 1600 0.4120 77.2754 82.4544 15041 77.2754 82.4544 15041 77.2754 0.0 82.4544 0.0
0.4353 0.4503 1700 0.4079 77.6411 82.8295 15041 77.6411 82.8295 15041 77.6411 0.0 82.8295 0.0
0.4344 0.4768 1800 0.4006 77.5347 82.8334 15041 77.5347 82.8334 15041 77.5347 0.0 82.8334 0.0
0.3835 0.5033 1900 0.4012 77.8140 82.9213 15041 77.8140 82.9213 15041 77.8140 0.0 82.9213 0.0
0.4618 0.5298 2000 0.3891 77.6345 82.8467 15041 77.6345 82.8467 15041 77.6345 0.0 82.8467 0.0
0.4156 0.5563 2100 0.3844 77.5613 82.7081 15041 77.5613 82.7081 15041 77.5613 0.0 82.7081 0.0
0.4051 0.5828 2200 0.3852 77.8871 82.8588 15041 77.8871 82.8588 15041 77.8871 0.0 82.8588 0.0
0.4071 0.6093 2300 0.3833 77.6810 82.8300 15041 77.6810 82.8300 15041 77.6810 0.0 82.8300 0.0
0.3738 0.6358 2400 0.3814 77.8938 83.0841 15041 77.8938 83.0841 15041 77.8938 0.0 83.0841 0.0
0.4027 0.6623 2500 0.3717 77.6012 82.6103 15041 77.6012 82.6103 15041 77.6012 0.0 82.6103 0.0
0.4326 0.6887 2600 0.3652 77.9469 82.9494 15041 77.9469 82.9494 15041 77.9469 0.0 82.9494 0.0
0.3293 0.7152 2700 0.3660 78.1265 83.0404 15041 78.1265 83.0404 15041 78.1265 0.0 83.0404 0.0
0.4206 0.7417 2800 0.3569 77.6544 82.5986 15041 77.6544 82.5986 15041 77.6544 0.0 82.5986 0.0
0.3474 0.7682 2900 0.3634 77.8339 82.7735 15041 77.8339 82.7735 15041 77.8339 0.0 82.7735 0.0
0.3742 0.7947 3000 0.3526 78.3326 83.1619 15041 78.3326 83.1619 15041 78.3326 0.0 83.1619 0.0
0.3992 0.8212 3100 0.3491 77.9735 82.7812 15041 77.9735 82.7812 15041 77.9735 0.0 82.7812 0.0
0.4146 0.8477 3200 0.3492 78.3459 83.1638 15041 78.3459 83.1638 15041 78.3459 0.0 83.1638 0.0
0.3934 0.8742 3300 0.3444 77.8605 82.6116 15041 77.8605 82.6116 15041 77.8605 0.0 82.6116 0.0
0.3673 0.9007 3400 0.3465 77.9403 82.7155 15041 77.9403 82.7155 15041 77.9403 0.0 82.7155 0.0
0.4128 0.9272 3500 0.3406 77.8738 82.7600 15041 77.8738 82.7600 15041 77.8738 0.0 82.7600 0.0
0.3976 0.9536 3600 0.3368 78.0533 82.8822 15041 78.0533 82.8822 15041 78.0533 0.0 82.8822 0.0
0.4077 0.9801 3700 0.3392 77.7408 82.5339 15041 77.7408 82.5339 15041 77.7408 0.0 82.5339 0.0
0.3512 1.0066 3800 0.3395 78.1331 82.8586 15041 78.1331 82.8586 15041 78.1331 0.0 82.8586 0.0
0.2996 1.0331 3900 0.3442 77.7010 82.5547 15041 77.7010 82.5547 15041 77.7010 0.0 82.5547 0.0
0.2646 1.0596 4000 0.3471 78.0999 82.8657 15041 78.0999 82.8657 15041 78.0999 0.0 82.8657 0.0
0.2925 1.0861 4100 0.3470 77.9270 82.5864 15041 77.9270 82.5864 15041 77.9270 0.0 82.5864 0.0
0.2995 1.1126 4200 0.3456 78.0068 82.8115 15041 78.0068 82.8115 15041 78.0068 0.0 82.8115 0.0

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.1
Downloads last month
12
Safetensors
Model size
109M params
Tensor type
F32
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for leomaurodesenv/bert-basketball-qa

Finetuned
(17)
this model