bert-soccer-qa

This model is a fine-tuned version of deepset/bert-base-uncased-squad2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3943
  • Exact: 74.5971
  • F1: 80.7187
  • Total: 25690
  • Hasans Exact: 74.5971
  • Hasans F1: 80.7187
  • Hasans Total: 25690
  • Best Exact: 74.5971
  • Best Exact Thresh: 0.0
  • Best F1: 80.7187
  • Best F1 Thresh: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Exact F1 Total Hasans Exact Hasans F1 Hasans Total Best Exact Best Exact Thresh Best F1 Best F1 Thresh
0.9455 0.0155 100 0.8127 69.8521 77.1360 25690 69.8521 77.1360 25690 69.8521 0.0 77.1360 0.0
0.8743 0.0311 200 0.7383 70.2141 77.3821 25690 70.2141 77.3821 25690 70.2141 0.0 77.3821 0.0
0.7189 0.0466 300 0.7195 71.0393 78.0890 25690 71.0393 78.0890 25690 71.0393 0.0 78.0890 0.0
0.7367 0.0622 400 0.6836 71.0899 78.0062 25690 71.0899 78.0062 25690 71.0899 0.0 78.0062 0.0
0.6469 0.0777 500 0.6646 71.4247 78.2333 25690 71.4247 78.2333 25690 71.4247 0.0 78.2333 0.0
0.6657 0.0932 600 0.6493 70.2842 77.1248 25690 70.2842 77.1248 25690 70.2842 0.0 77.1248 0.0
0.662 0.1088 700 0.6340 72.2265 79.0144 25690 72.2265 79.0144 25690 72.2265 0.0 79.0144 0.0
0.6969 0.1243 800 0.6086 72.1292 78.8389 25690 72.1292 78.8389 25690 72.1292 0.0 78.8389 0.0
0.669 0.1398 900 0.5938 71.8957 78.6137 25690 71.8957 78.6137 25690 71.8957 0.0 78.6137 0.0
0.6676 0.1554 1000 0.5817 72.2849 78.8877 25690 72.2849 78.8877 25690 72.2849 0.0 78.8877 0.0
0.6664 0.1709 1100 0.5696 71.9541 78.6815 25690 71.9541 78.6815 25690 71.9541 0.0 78.6815 0.0
0.6006 0.1865 1200 0.5661 72.0631 78.7534 25690 72.0631 78.7534 25690 72.0631 0.0 78.7534 0.0
0.6111 0.2020 1300 0.5587 72.6586 79.2351 25690 72.6586 79.2351 25690 72.6586 0.0 79.2351 0.0
0.5793 0.2175 1400 0.5600 72.3939 79.0052 25690 72.3939 79.0052 25690 72.3939 0.0 79.0052 0.0
0.6064 0.2331 1500 0.5501 72.7443 79.3616 25690 72.7443 79.3616 25690 72.7443 0.0 79.3616 0.0
0.6314 0.2486 1600 0.5354 72.2772 78.8176 25690 72.2772 78.8176 25690 72.2772 0.0 78.8176 0.0
0.6741 0.2641 1700 0.5330 72.1059 78.6777 25690 72.1059 78.6777 25690 72.1059 0.0 78.6777 0.0
0.5912 0.2797 1800 0.5291 72.2499 78.7891 25690 72.2499 78.7891 25690 72.2499 0.0 78.7891 0.0
0.584 0.2952 1900 0.5198 72.5691 79.1296 25690 72.5691 79.1296 25690 72.5691 0.0 79.1296 0.0
0.64 0.3108 2000 0.5117 72.7910 79.2873 25690 72.7910 79.2873 25690 72.7910 0.0 79.2873 0.0
0.5361 0.3263 2100 0.5079 73.1335 79.6027 25690 73.1335 79.6027 25690 73.1335 0.0 79.6027 0.0
0.5935 0.3418 2200 0.5025 72.9350 79.4924 25690 72.9350 79.4924 25690 72.9350 0.0 79.4924 0.0
0.5198 0.3574 2300 0.4996 72.6975 79.2533 25690 72.6975 79.2533 25690 72.6975 0.0 79.2533 0.0
0.5474 0.3729 2400 0.4912 73.2970 79.7562 25690 73.2970 79.7562 25690 73.2970 0.0 79.7562 0.0
0.5655 0.3884 2500 0.4847 73.4605 79.9581 25690 73.4605 79.9581 25690 73.4605 0.0 79.9581 0.0
0.5652 0.4040 2600 0.4784 73.3320 79.8207 25690 73.3320 79.8207 25690 73.3320 0.0 79.8207 0.0
0.5288 0.4195 2700 0.4846 73.4838 79.9261 25690 73.4838 79.9261 25690 73.4838 0.0 79.9261 0.0
0.539 0.4351 2800 0.4739 73.0790 79.5401 25690 73.0790 79.5401 25690 73.0790 0.0 79.5401 0.0
0.5493 0.4506 2900 0.4694 73.3009 79.6920 25690 73.3009 79.6920 25690 73.3009 0.0 79.6920 0.0
0.4785 0.4661 3000 0.4669 73.9432 80.1966 25690 73.9432 80.1966 25690 73.9432 0.0 80.1966 0.0
0.4979 0.4817 3100 0.4644 73.5189 79.8528 25690 73.5189 79.8528 25690 73.5189 0.0 79.8528 0.0
0.4908 0.4972 3200 0.4576 73.5734 79.9085 25690 73.5734 79.9085 25690 73.5734 0.0 79.9085 0.0
0.4845 0.5127 3300 0.4491 73.8147 80.1410 25690 73.8147 80.1410 25690 73.8147 0.0 80.1410 0.0
0.5234 0.5283 3400 0.4499 73.6006 79.9882 25690 73.6006 79.9882 25690 73.6006 0.0 79.9882 0.0
0.5345 0.5438 3500 0.4415 73.6395 79.9724 25690 73.6395 79.9724 25690 73.6395 0.0 79.9724 0.0
0.5153 0.5594 3600 0.4388 73.5228 79.8471 25690 73.5228 79.8471 25690 73.5228 0.0 79.8471 0.0
0.5113 0.5749 3700 0.4451 73.9393 80.2260 25690 73.9393 80.2260 25690 73.9393 0.0 80.2260 0.0
0.4752 0.5904 3800 0.4427 73.7330 80.0047 25690 73.7330 80.0047 25690 73.7330 0.0 80.0047 0.0
0.5161 0.6060 3900 0.4382 73.7018 79.9274 25690 73.7018 79.9274 25690 73.7018 0.0 79.9274 0.0
0.4734 0.6215 4000 0.4380 73.8887 80.0773 25690 73.8887 80.0773 25690 73.8887 0.0 80.0773 0.0
0.4852 0.6370 4100 0.4334 74.0093 80.1717 25690 74.0093 80.1717 25690 74.0093 0.0 80.1717 0.0
0.5121 0.6526 4200 0.4244 73.9471 80.1321 25690 73.9471 80.1321 25690 73.9471 0.0 80.1321 0.0
0.4475 0.6681 4300 0.4285 73.9782 80.1311 25690 73.9782 80.1311 25690 73.9782 0.0 80.1311 0.0
0.4963 0.6837 4400 0.4176 74.0016 80.1124 25690 74.0016 80.1124 25690 74.0016 0.0 80.1124 0.0
0.478 0.6992 4500 0.4187 74.2857 80.3374 25690 74.2857 80.3374 25690 74.2857 0.0 80.3374 0.0
0.4634 0.7147 4600 0.4158 74.0171 80.1405 25690 74.0171 80.1405 25690 74.0171 0.0 80.1405 0.0
0.4562 0.7303 4700 0.4158 74.0444 80.1174 25690 74.0444 80.1174 25690 74.0444 0.0 80.1174 0.0
0.509 0.7458 4800 0.4160 73.9081 79.9863 25690 73.9081 79.9863 25690 73.9081 0.0 79.9863 0.0
0.5062 0.7613 4900 0.4129 74.0132 80.1207 25690 74.0132 80.1207 25690 74.0132 0.0 80.1207 0.0
0.4404 0.7769 5000 0.4112 74.3363 80.4688 25690 74.3363 80.4688 25690 74.3363 0.0 80.4688 0.0
0.4835 0.7924 5100 0.4058 74.2935 80.4296 25690 74.2935 80.4296 25690 74.2935 0.0 80.4296 0.0
0.5583 0.8080 5200 0.4043 74.3636 80.4871 25690 74.3636 80.4871 25690 74.3636 0.0 80.4871 0.0
0.5009 0.8235 5300 0.4066 74.3519 80.4009 25690 74.3519 80.4009 25690 74.3519 0.0 80.4009 0.0
0.4881 0.8390 5400 0.4030 74.4142 80.4285 25690 74.4142 80.4285 25690 74.4142 0.0 80.4285 0.0
0.4428 0.8546 5500 0.3954 74.2779 80.3785 25690 74.2779 80.3785 25690 74.2779 0.0 80.3785 0.0
0.4651 0.8701 5600 0.3993 74.3246 80.4433 25690 74.3246 80.4433 25690 74.3246 0.0 80.4433 0.0
0.4067 0.8856 5700 0.4031 74.3480 80.5045 25690 74.3480 80.5045 25690 74.3480 0.0 80.5045 0.0
0.4374 0.9012 5800 0.3958 74.6672 80.7476 25690 74.6672 80.7476 25690 74.6672 0.0 80.7476 0.0
0.4645 0.9167 5900 0.3954 74.3986 80.5765 25690 74.3986 80.5765 25690 74.3986 0.0 80.5765 0.0
0.4689 0.9323 6000 0.3971 74.6516 80.6983 25690 74.6516 80.6983 25690 74.6516 0.0 80.6983 0.0
0.4239 0.9478 6100 0.3926 74.7373 80.7854 25690 74.7373 80.7854 25690 74.7373 0.0 80.7854 0.0
0.4344 0.9633 6200 0.3919 74.6555 80.6953 25690 74.6555 80.6953 25690 74.6555 0.0 80.6953 0.0
0.3875 0.9789 6300 0.3989 74.2507 80.3817 25690 74.2507 80.3817 25690 74.2507 0.0 80.3817 0.0
0.4099 0.9944 6400 0.3944 74.4570 80.4510 25690 74.4570 80.4510 25690 74.4570 0.0 80.4510 0.0
0.4074 1.0099 6500 0.3972 74.8151 80.7001 25690 74.8151 80.7001 25690 74.8151 0.0 80.7001 0.0
0.3219 1.0255 6600 0.4074 74.6399 80.6479 25690 74.6399 80.6479 25690 74.6399 0.0 80.6479 0.0
0.3923 1.0410 6700 0.4027 74.5699 80.5256 25690 74.5699 80.5256 25690 74.5699 0.0 80.5256 0.0
0.359 1.0566 6800 0.3987 74.7334 80.6814 25690 74.7334 80.6814 25690 74.7334 0.0 80.6814 0.0
0.3919 1.0721 6900 0.4035 73.9704 79.9235 25690 73.9704 79.9235 25690 73.9704 0.0 79.9235 0.0
0.3784 1.0876 7000 0.3972 74.6283 80.6954 25690 74.6283 80.6954 25690 74.6283 0.0 80.6954 0.0
0.3317 1.1032 7100 0.3943 74.5971 80.7187 25690 74.5971 80.7187 25690 74.5971 0.0 80.7187 0.0

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.1
Downloads last month
16
Safetensors
Model size
109M params
Tensor type
F32
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for leomaurodesenv/bert-soccer-qa

Finetuned
(17)
this model