File size: 4,661 Bytes
a823c0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from pathlib import Path
import torch
from omegaconf import OmegaConf
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.policies.factory import make_policy
from lerobot.common.utils.utils import init_hydra_config
PATH_TO_ORIGINAL_WEIGHTS = "/home/alexander/Projects/act/outputs/sim_transfer_cube_human_vae/policy_last.ckpt"
PATH_TO_CONFIG = (
"outputs/train/act_aloha_sim_transfer_cube_human_final_video/.hydra/config.yaml"
)
PATH_TO_SAVE_NEW_WEIGHTS = "/tmp/act"
cfg = init_hydra_config(PATH_TO_CONFIG)
policy = make_policy(hydra_cfg=cfg, dataset_stats=make_dataset(cfg).stats)
state_dict = torch.load(PATH_TO_ORIGINAL_WEIGHTS)
# Remove keys based on what they start with.
start_removals = [
# There is a bug that means the pretrained model doesn't even use the final decoder layers.
*[f"model.transformer.decoder.layers.{i}" for i in range(1, 7)],
"model.is_pad_head.",
]
for to_remove in start_removals:
for k in list(state_dict.keys()):
if k.startswith(to_remove):
del state_dict[k]
# Replace keys based on what they start with.
start_replacements = [
("model.query_embed.weight", "model.pos_embed.weight"),
("model.pos_table", "model.vae_encoder_pos_enc"),
("model.pos_embed.weight", "model.decoder_pos_embed.weight"),
("model.encoder.", "model.vae_encoder."),
("model.encoder_action_proj.", "model.vae_encoder_action_input_proj."),
("model.encoder_joint_proj.", "model.vae_encoder_robot_state_input_proj."),
("model.latent_proj.", "model.vae_encoder_latent_output_proj."),
("model.latent_proj.", "model.vae_encoder_latent_output_proj."),
("model.input_proj.", "model.encoder_img_feat_input_proj."),
("model.input_proj_robot_state", "model.encoder_robot_state_input_proj"),
("model.latent_out_proj.", "model.encoder_latent_input_proj."),
("model.transformer.encoder.", "model.encoder."),
("model.transformer.decoder.", "model.decoder."),
("model.backbones.0.0.body.", "model.backbone."),
("model.additional_pos_embed.weight", "model.encoder_robot_and_latent_pos_embed.weight"),
("model.cls_embed.weight", "model.vae_encoder_cls_embed.weight"),
]
for to_replace, replace_with in start_replacements:
for k in list(state_dict.keys()):
if k.startswith(to_replace):
k_ = replace_with + k.removeprefix(to_replace)
state_dict[k_] = state_dict[k]
del state_dict[k]
state_dict["normalize_inputs.buffer_observation_images_top.mean"] = torch.tensor(
[[[0.4850]], [[0.4560]], [[0.4060]]]
)
state_dict["normalize_inputs.buffer_observation_images_top.std"] = torch.tensor(
[[[0.2290]], [[0.2240]], [[0.2250]]]
)
state_dict["normalize_inputs.buffer_observation_state.mean"] = torch.tensor(
[
-0.0074,
-0.6319,
1.0357,
-0.0503,
-0.4620,
-0.0747,
0.4747,
-0.0362,
-0.3320,
0.9039,
-0.2206,
-0.3101,
-0.2348,
0.6842,
]
)
state_dict["normalize_inputs.buffer_observation_state.std"] = torch.tensor(
[
0.0122,
0.2975,
0.1673,
0.0473,
0.1486,
0.0879,
0.3175,
0.1050,
0.2793,
0.1809,
0.2660,
0.3047,
0.5299,
0.2550,
]
)
state_dict["unnormalize_outputs.buffer_action.mean"] = torch.tensor(
[
-0.0076,
-0.6282,
1.0313,
-0.0466,
-0.4721,
-0.0745,
0.3739,
-0.0372,
-0.3261,
0.8997,
-0.2137,
-0.3184,
-0.2336,
0.5519,
]
)
state_dict["normalize_targets.buffer_action.mean"] = state_dict["unnormalize_outputs.buffer_action.mean"]
state_dict["unnormalize_outputs.buffer_action.std"] = torch.tensor(
[
0.0125,
0.2957,
0.1670,
0.0458,
0.1483,
0.0876,
0.3067,
0.1060,
0.2757,
0.1806,
0.2630,
0.3071,
0.5305,
0.3838,
]
)
state_dict["normalize_targets.buffer_action.std"] = state_dict["unnormalize_outputs.buffer_action.std"]
missing_keys, unexpected_keys = policy.load_state_dict(state_dict, strict=False)
if len(missing_keys) != 0:
print("MISSING KEYS")
print(missing_keys)
if len(unexpected_keys) != 0:
print("UNEXPECTED KEYS")
print(unexpected_keys)
if len(missing_keys) != 0 or len(unexpected_keys) != 0:
print("Failed due to mismatch in state dicts.")
exit()
policy.save_pretrained(PATH_TO_SAVE_NEW_WEIGHTS)
OmegaConf.save(cfg, Path(PATH_TO_SAVE_NEW_WEIGHTS) / "config.yaml") |