Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Hermes-2-Theta-Llama-3-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 90eeee3557521f3f_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/90eeee3557521f3f_train_data.json
  type:
    field_input: chat
    field_instruction: system
    field_output: text
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso06/7d6b7284-f6c4-4093-8870-a8f976e01f17
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000206
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/90eeee3557521f3f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 60
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 121fb168-7607-454c-b681-b4bef5a6491c
wandb_project: 06a
wandb_run: your_name
wandb_runid: 121fb168-7607-454c-b681-b4bef5a6491c
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

7d6b7284-f6c4-4093-8870-a8f976e01f17

This model is a fine-tuned version of NousResearch/Hermes-2-Theta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1974

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000206
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 60
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0003 1 0.7314
0.1971 0.1502 500 0.1974

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso06/7d6b7284-f6c4-4093-8870-a8f976e01f17