Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2-1.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 737f68e0bc7dedc9_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/737f68e0bc7dedc9_train_data.json
  type:
    field_input: ja_sentence
    field_instruction: tag
    field_output: en_sentence
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso07/f3064748-dba6-4888-8e24-0fb0231aa2db
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000207
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/737f68e0bc7dedc9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 70
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 4ccc538b-2b2e-418b-856a-9beb9065bf0a
wandb_project: 07a
wandb_run: your_name
wandb_runid: 4ccc538b-2b2e-418b-856a-9beb9065bf0a
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

f3064748-dba6-4888-8e24-0fb0231aa2db

This model is a fine-tuned version of unsloth/Qwen2-1.5B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1771

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000207
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 70
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0015 1 3.0256
1.2024 0.7299 500 1.1771

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso07/f3064748-dba6-4888-8e24-0fb0231aa2db

Base model

unsloth/Qwen2-1.5B
Adapter
(216)
this model