See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 614113b4f1a6b045_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/614113b4f1a6b045_train_data.json
type:
field_input: examples
field_instruction: func_desc
field_output: answers
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso18/379a5599-c83f-464f-bddc-18a573561652
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000218
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1000
micro_batch_size: 4
mlflow_experiment_name: /tmp/614113b4f1a6b045_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 180
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 923afc99-aa10-4ac7-925a-f5275d76ccd4
wandb_project: 18a
wandb_run: your_name
wandb_runid: 923afc99-aa10-4ac7-925a-f5275d76ccd4
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
379a5599-c83f-464f-bddc-18a573561652
This model is a fine-tuned version of MLP-KTLim/llama-3-Korean-Bllossom-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4144
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000218
- train_batch_size: 4
- eval_batch_size: 4
- seed: 180
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0009 | 1 | 1.9347 |
0.461 | 0.4293 | 500 | 0.5104 |
0.4046 | 0.8586 | 1000 | 0.4144 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for lesso18/379a5599-c83f-464f-bddc-18a573561652
Base model
meta-llama/Meta-Llama-3-8B
Finetuned
MLP-KTLim/llama-3-Korean-Bllossom-8B