zephyr-7b-sft-full
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.9411
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0618 | 0.0231 | 25 | 1.0578 |
1.0471 | 0.0461 | 50 | 1.0590 |
1.0447 | 0.0692 | 75 | 1.0612 |
1.0602 | 0.0923 | 100 | 1.0589 |
1.0717 | 0.1154 | 125 | 1.0559 |
1.0244 | 0.1384 | 150 | 1.0520 |
1.0251 | 0.1615 | 175 | 1.0483 |
1.0343 | 0.1846 | 200 | 1.0470 |
1.0441 | 0.2077 | 225 | 1.0421 |
1.0291 | 0.2307 | 250 | 1.0399 |
1.0243 | 0.2538 | 275 | 1.0374 |
1.0294 | 0.2769 | 300 | 1.0332 |
1.0263 | 0.3000 | 325 | 1.0300 |
1.0032 | 0.3230 | 350 | 1.0247 |
1.0178 | 0.3461 | 375 | 1.0214 |
0.9982 | 0.3692 | 400 | 1.0160 |
0.9965 | 0.3922 | 425 | 1.0127 |
1.0068 | 0.4153 | 450 | 1.0089 |
1.0027 | 0.4384 | 475 | 1.0054 |
1.0053 | 0.4615 | 500 | 1.0011 |
0.9706 | 0.4845 | 525 | 0.9964 |
0.9779 | 0.5076 | 550 | 0.9925 |
0.9693 | 0.5307 | 575 | 0.9883 |
0.9638 | 0.5538 | 600 | 0.9837 |
0.9599 | 0.5768 | 625 | 0.9799 |
0.971 | 0.5999 | 650 | 0.9759 |
0.9635 | 0.6230 | 675 | 0.9719 |
0.9341 | 0.6461 | 700 | 0.9680 |
0.9427 | 0.6691 | 725 | 0.9643 |
0.9404 | 0.6922 | 750 | 0.9608 |
0.934 | 0.7153 | 775 | 0.9575 |
0.9212 | 0.7383 | 800 | 0.9548 |
0.931 | 0.7614 | 825 | 0.9521 |
0.9325 | 0.7845 | 850 | 0.9499 |
0.9344 | 0.8076 | 875 | 0.9477 |
0.934 | 0.8306 | 900 | 0.9458 |
0.9369 | 0.8537 | 925 | 0.9443 |
0.9404 | 0.8768 | 950 | 0.9431 |
0.9174 | 0.8999 | 975 | 0.9422 |
0.9194 | 0.9229 | 1000 | 0.9416 |
0.931 | 0.9460 | 1025 | 0.9413 |
0.939 | 0.9691 | 1050 | 0.9411 |
0.928 | 0.9922 | 1075 | 0.9411 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1+rocm6.2
- Datasets 3.2.0
- Tokenizers 0.20.3
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support