Cross-Encoder for Greek Natural Language Inference (Textual Entailment) & Zero-Shot Classification
By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC)
This model was trained using SentenceTransformers Cross-Encoder class.
Training Data
The model was trained on the the combined Greek+English version of the AllNLI dataset(sum of SNLI and MultiNLI). The Greek part was created using the EN2EL NMT model available here.
The model can be used in two ways:
- NLI/Textual Entailment: For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.
- Zero-shot classification through the Huggingface pipeline: Given a sentence and a set of labels/topics, it will output the likelihood of the sentence belonging to each of the topic. Under the hood, the logit for entailment between the sentence and each label is taken as the logit for the candidate label being valid.
Performance
Evaluation on classification accuracy (entailment, contradiction, neutral) on mixed (Greek+English) AllNLI-dev set:
Metric | Value |
---|---|
Accuracy | 0.8409 |
To use the model for NLI/Textual Entailment
Usage with sentence_transformers
Pre-trained models can be used like this:
from sentence_transformers import CrossEncoder
model = CrossEncoder('lighteternal/nli-xlm-r-greek')
scores = model.predict([('Δύο άνθρωποι συναντιούνται στο δρόμο', 'Ο δρόμος έχει κόσμο'),
('Ένα μαύρο αυτοκίνητο ξεκινάει στη μέση του πλήθους.', 'Ένας άντρας οδηγάει σε ένα μοναχικό δρόμο'),
('Δυο γυναίκες μιλάνε στο κινητό', 'Το τραπέζι ήταν πράσινο')])
#Convert scores to labels
label_mapping = ['contradiction', 'entailment', 'neutral']
labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
print(scores, labels)
# Οutputs
#[[-3.1526504 2.9981945 -0.3108107]
# [ 5.0549307 -2.757949 -1.6220676]
# [-0.5124733 -2.2671669 3.1630592]] ['entailment', 'contradiction', 'neutral']
Usage with Transformers AutoModel
You can use the model also directly with Transformers library (without SentenceTransformers library):
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model = AutoModelForSequenceClassification.from_pretrained('lighteternal/nli-xlm-r-greek')
tokenizer = AutoTokenizer.from_pretrained('lighteternal/nli-xlm-r-greek')
features = tokenizer(['Δύο άνθρωποι συναντιούνται στο δρόμο', 'Ο δρόμος έχει κόσμο'],
['Ένα μαύρο αυτοκίνητο ξεκινάει στη μέση του πλήθους.', 'Ένας άντρας οδηγάει σε ένα μοναχικό δρόμο.'],
padding=True, truncation=True, return_tensors="pt")
model.eval()
with torch.no_grad():
scores = model(**features).logits
label_mapping = ['contradiction', 'entailment', 'neutral']
labels = [label_mapping[score_max] for score_max in scores.argmax(dim=1)]
print(labels)
To use the model for Zero-Shot Classification
This model can also be used for zero-shot-classification:
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model='lighteternal/nli-xlm-r-greek')
sent = "Το Facebook κυκλοφόρησε τα πρώτα «έξυπνα» γυαλιά επαυξημένης πραγματικότητας"
candidate_labels = ["πολιτική", "τεχνολογία", "αθλητισμός"]
res = classifier(sent, candidate_labels)
print(res)
#outputs:
#{'sequence': 'Το Facebook κυκλοφόρησε τα πρώτα «έξυπνα» γυαλιά επαυξημένης πραγματικότητας', 'labels': ['τεχνολογία', 'αθλητισμός', 'πολιτική'], 'scores': [0.8380699157714844, 0.09086982160806656, 0.07106029987335205]}
Acknowledgement
The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call)
Citation info
Citation for the Greek model TBA. Based on the work Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks Kudos to @nreimers (Nils Reimers) for his support on Github .
- Downloads last month
- 6