Description
Implementation of the KV cache quantization method introduced in the SQuat paper (COLM 2025). SQuat (Subspace-orthogonal KV cache quantization) reduces the memory and compute cost of storing the KV cache by carefully quantizing the key tensors. It constructs a task-relevant subspace and ensures that quantization errors remain orthogonal to it, thereby minimizing their impact on attention outputs. SQuat is training-free, calibration-free, and operates on-the-fly, with strong theoretical grounding and state-of-the-art empirical results.
This repo provides a partial implementation of SQuat via a custom SQuatCache
class. It requires passing an additional query_states
input to .update()
. To support this, you can monkey patch the LlamaAttention.forward
method—see the example usage below.
For the full implementation, please refer to the original repository.
Base model:
meta-llama/Llama-3.1-8B-Instruct
Model compatibility
Most models. More specifically, any transformer
LLM/VLM trained for causal language modeling.
Additional Arguments
backend
(str
, optional): quantization backend, default isquanto
nbits
(int
, optional): number of bits for quantization, default is2
quant_group_size
(int
, optional): quantization group size, default is64
residual_length
(int
, optional): residual length, default is32
squat_lambda
(float
, optional): squat lambda, default is0.001
subspace_dim
(int
, optional): subspace dimension, default is10
shared_svd
(bool
, optional): if use shared svd, default isTrue
Output Type changes
(none)
Example usage
import torch
from typing import Callable, Optional, Tuple
from transformers.cache_utils import Cache
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, eager_attention_forward
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.processing_utils import Unpack
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
def llama_attn_forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position, "query_states": query_states, "attention_mask": attention_mask}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
def replace_llama():
transformers.models.llama.modeling_llama.LlamaAttention.forward = llama_attn_forward
replace_llama()
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-3.1-8B-Instruct')
model = AutoModelForCausalLM.from_pretrained('meta-llama/Llama-3.1-8B-Instruct', device_map="auto")
inputs = tokenizer(["I like rock music because"], return_tensors="pt").to(model.device)
gen_out = model.generate(**inputs, custom_generate="ligongh/squat", trust_remote_code=True)
print(tokenizer.batch_decode(gen_out))