File size: 4,573 Bytes
2223589 e542821 b66d798 2223589 b66d798 2223589 b66d798 2223589 b66d798 2223589 b66d798 2223589 e542821 e0c18d8 2223589 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-turkish-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-turkish-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7126
- Wer: 0.8198
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 120
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 6.7419 | 2.38 | 200 | 3.1913 | 1.0 |
| 3.0446 | 4.76 | 400 | 2.3247 | 1.0 |
| 1.3163 | 7.14 | 600 | 1.2629 | 0.9656 |
| 0.6058 | 9.52 | 800 | 1.2203 | 0.9343 |
| 0.3687 | 11.9 | 1000 | 1.2157 | 0.8849 |
| 0.2644 | 14.29 | 1200 | 1.3693 | 0.8992 |
| 0.2147 | 16.67 | 1400 | 1.3321 | 0.8623 |
| 0.1962 | 19.05 | 1600 | 1.3476 | 0.8886 |
| 0.1631 | 21.43 | 1800 | 1.3984 | 0.8755 |
| 0.15 | 23.81 | 2000 | 1.4602 | 0.8798 |
| 0.1311 | 26.19 | 2200 | 1.4727 | 0.8836 |
| 0.1174 | 28.57 | 2400 | 1.5257 | 0.8805 |
| 0.1155 | 30.95 | 2600 | 1.4697 | 0.9337 |
| 0.1046 | 33.33 | 2800 | 1.6076 | 0.8667 |
| 0.1063 | 35.71 | 3000 | 1.5012 | 0.8861 |
| 0.0996 | 38.1 | 3200 | 1.6204 | 0.8605 |
| 0.088 | 40.48 | 3400 | 1.4788 | 0.8586 |
| 0.089 | 42.86 | 3600 | 1.5983 | 0.8648 |
| 0.0805 | 45.24 | 3800 | 1.5045 | 0.8298 |
| 0.0718 | 47.62 | 4000 | 1.6361 | 0.8611 |
| 0.0718 | 50.0 | 4200 | 1.5088 | 0.8548 |
| 0.0649 | 52.38 | 4400 | 1.5491 | 0.8554 |
| 0.0685 | 54.76 | 4600 | 1.5939 | 0.8442 |
| 0.0588 | 57.14 | 4800 | 1.6321 | 0.8536 |
| 0.0591 | 59.52 | 5000 | 1.6468 | 0.8442 |
| 0.0529 | 61.9 | 5200 | 1.6086 | 0.8661 |
| 0.0482 | 64.29 | 5400 | 1.6622 | 0.8517 |
| 0.0396 | 66.67 | 5600 | 1.6191 | 0.8436 |
| 0.0463 | 69.05 | 5800 | 1.6231 | 0.8661 |
| 0.0415 | 71.43 | 6000 | 1.6874 | 0.8511 |
| 0.0383 | 73.81 | 6200 | 1.7054 | 0.8411 |
| 0.0411 | 76.19 | 6400 | 1.7073 | 0.8486 |
| 0.0346 | 78.57 | 6600 | 1.7137 | 0.8342 |
| 0.0318 | 80.95 | 6800 | 1.6523 | 0.8329 |
| 0.0299 | 83.33 | 7000 | 1.6893 | 0.8579 |
| 0.029 | 85.71 | 7200 | 1.7162 | 0.8429 |
| 0.025 | 88.1 | 7400 | 1.7589 | 0.8529 |
| 0.025 | 90.48 | 7600 | 1.7581 | 0.8398 |
| 0.0232 | 92.86 | 7800 | 1.8459 | 0.8442 |
| 0.0215 | 95.24 | 8000 | 1.7942 | 0.8448 |
| 0.0222 | 97.62 | 8200 | 1.6848 | 0.8442 |
| 0.0179 | 100.0 | 8400 | 1.7223 | 0.8298 |
| 0.0176 | 102.38 | 8600 | 1.7426 | 0.8404 |
| 0.016 | 104.76 | 8800 | 1.7501 | 0.8411 |
| 0.0153 | 107.14 | 9000 | 1.7185 | 0.8235 |
| 0.0136 | 109.52 | 9200 | 1.7250 | 0.8292 |
| 0.0117 | 111.9 | 9400 | 1.7159 | 0.8185 |
| 0.0123 | 114.29 | 9600 | 1.7135 | 0.8248 |
| 0.0121 | 116.67 | 9800 | 1.7189 | 0.8210 |
| 0.0116 | 119.05 | 10000 | 1.7126 | 0.8198 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
|