lillythomas's picture
End of training
e999eb1 verified
metadata
library_name: transformers
license: apache-2.0
base_model: PekingU/rtdetr_v2_r50vd
tags:
  - generated_from_trainer
model-index:
  - name: rtdetr-v2-r50-cppe5-finetune-2
    results: []

rtdetr-v2-r50-cppe5-finetune-2

This model is a fine-tuned version of PekingU/rtdetr_v2_r50vd on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 15.7596
  • Map: 0.243
  • Map 50: 0.4016
  • Map 75: 0.2288
  • Map Small: 0.1622
  • Map Medium: 0.1679
  • Map Large: 0.4047
  • Mar 1: 0.2498
  • Mar 10: 0.5329
  • Mar 100: 0.6054
  • Mar Small: 0.4114
  • Mar Medium: 0.5602
  • Mar Large: 0.781
  • Map Coverall: 0.4109
  • Mar 100 Coverall: 0.7821
  • Map Face Shield: 0.1194
  • Mar 100 Face Shield: 0.6471
  • Map Gloves: 0.2443
  • Mar 100 Gloves: 0.4508
  • Map Goggles: 0.065
  • Mar 100 Goggles: 0.4586
  • Map Mask: 0.3754
  • Mar 100 Mask: 0.6882

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Coverall Mar 100 Coverall Map Face Shield Mar 100 Face Shield Map Gloves Mar 100 Gloves Map Goggles Mar 100 Goggles Map Mask Mar 100 Mask
No log 1.0 107 35.1046 0.0395 0.0911 0.0256 0.0015 0.0104 0.0475 0.0733 0.1851 0.2494 0.0421 0.1906 0.365 0.1668 0.5491 0.0207 0.2278 0.0068 0.1759 0.0007 0.0877 0.0024 0.2062
No log 2.0 214 18.0639 0.1779 0.3283 0.1719 0.0679 0.1 0.2844 0.2053 0.4086 0.4734 0.2576 0.3816 0.7174 0.4958 0.7032 0.0485 0.4873 0.1107 0.3246 0.0257 0.3754 0.2086 0.4764

Framework versions

  • Transformers 4.50.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1