File size: 7,752 Bytes
a7b0685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import torch.optim as optim
from transformers import AutoModelForCausalLM
from transformers.modeling_utils import PreTrainedModel
from transformers.configuration_utils import PretrainedConfig
# Update the DecoderLayer to use the grouped MultiHeadAttention
class DecoderLayer(nn.Module):
    def __init__(self, d_model, n_heads, dim_feedforward, dropout=0.1, group_size=16):
        super(DecoderLayer, self).__init__()
        self.self_attn = MultiHeadAttention(d_model, n_heads, dropout, group_size)
        self.feed_forward = PositionwiseFeedForward(d_model, dim_feedforward, dropout)
        self.layer_norm1 = nn.LayerNorm(d_model)
        self.layer_norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        # Self-Attention Mechanism (SA)
        norm_x = self.layer_norm1(x)
        x = x + self.dropout(self.self_attn(norm_x, norm_x, norm_x))
        # Feed-Forward Network (FFN)
        norm_x = self.layer_norm2(x)
        x = x + self.dropout(self.feed_forward(norm_x))
        return x
class MultiHeadAttention(nn.Module):
    def __init__(self, d_model, n_heads, dropout=0.1, group_size=16):
        super(MultiHeadAttention, self).__init__()
        self.query_linear = nn.Linear(d_model, d_model)
        self.key_linear = nn.Linear(d_model, d_model)
        self.value_linear = nn.Linear(d_model, d_model)
        self.dropout = nn.Dropout(dropout)
        self.n_heads = n_heads
        self.d_model = d_model
        self.group_size = group_size

    def forward(self, query, key, value):
        # Compute attention scores
        query = self.query_linear(query)
        key = self.key_linear(key)
        value = self.value_linear(value)
        
        # Split the input sequences into groups
        query_groups = query.chunk(self.group_size, dim=1)
        key_groups = key.chunk(self.group_size, dim=1)
        value_groups = value.chunk(self.group_size, dim=1)

        attention_scores = []
        for q, k, v in zip(query_groups, key_groups, value_groups):
            scores = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(self.d_model)
            scores = F.softmax(scores, dim=-1)
            scores = self.dropout(scores)
            attention_scores.append(torch.matmul(scores, v))

        # Concatenate the outputs from all groups
        output = torch.cat(attention_scores, dim=1)
        return output

class PositionwiseFeedForward(nn.Module):
    def __init__(self, d_model, dim_feedforward, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

    def forward(self, x):
        x = F.relu(self.linear1(x))
        x = self.dropout(x)
        x = self.linear2(x)
        return x

# Update the Decoder class to use the grouped MultiHeadAttention
class Decoder(nn.Module):
    def __init__(self, num_layers, d_model, n_heads, dim_feedforward, dropout=0.1, group_size=16):
        super(Decoder, self).__init__()
        self.layers = nn.ModuleList([
            DecoderLayer(d_model, n_heads, dim_feedforward, dropout, group_size) 
            for _ in range(num_layers)
        ])
        self.layer_norm = nn.LayerNorm(d_model)

    def forward(self, x):
        for layer in self.layers:
            x = layer(x)
        x = self.layer_norm(x)
        return x

class Embeddings(nn.Module):
    def __init__(self, d_model, vocab_size):
        super(Embeddings, self).__init__()
        self.lut = nn.Embedding(vocab_size, d_model)
        self.d_model = d_model

    def forward(self, x):
        return self.lut(x) * math.sqrt(self.d_model)

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)
class RMSNorm(nn.Module):
    def __init__(self, dim, epsilon=1e-6, scale=True):
        super(RMSNorm, self).__init__()
        self.epsilon = epsilon
        self.scale = scale
        self.weight = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        rms = torch.sqrt(torch.mean(torch.square(x), dim=-1, keepdim=True))
        if self.scale:
            weight = self.weight / (rms + self.epsilon)
            return weight * x
        else:
            return x / (rms + self.epsilon)
class TransformerDecoder(nn.Module):
    def __init__(self, num_layers, d_model, n_heads, dim_feedforward, dropout=0.1, vocab_size=10000, group_size=16):
        super(TransformerDecoder, self).__init__()
        self.embeddings = Embeddings(d_model, vocab_size)
        self.positional_encoding = PositionalEncoding(d_model, dropout)
        self.decoder = Decoder(num_layers, d_model, n_heads, dim_feedforward, dropout)
        self.rms_norm = RMSNorm(d_model)
        self.group_size = group_size

    def forward(self, x):
        x = self.embeddings(x)
        x = self.positional_encoding(x)
        x = self.decoder(x)
        x = self.rms_norm(x)
        return x
class TransformerDecoderLM(nn.Module):
    def __init__(self, num_layers, d_model, n_heads, dim_feedforward, dropout=0.1, vocab_size=10000, group_size=16):
        super(TransformerDecoderLM, self).__init__()
        self.transformer = TransformerDecoder(num_layers, d_model, n_heads, dim_feedforward, dropout, vocab_size, group_size)
        self.lm_head = nn.Linear(d_model, vocab_size)

    def forward(self, input_ids):
        transformer_output = self.transformer(input_ids)
        lm_logits = self.lm_head(transformer_output)
        return lm_logits
class CustomConfig(PretrainedConfig):
    model_type = "custom_transformer"
    def __init__(self, num_layers=6, d_model=512, n_heads=8, dim_feedforward=2048, dropout=0.1, vocab_size=10000, group_size=16, **kwargs):
        self.num_layers = num_layers
        self.d_model = d_model
        self.n_heads = n_heads
        self.dim_feedforward = dim_feedforward
        self.dropout = dropout
        self.vocab_size = vocab_size
        self.group_size = group_size
        super().__init__(**kwargs)

class CustomTransformerForCausalLM(PreTrainedModel):
    config_class = CustomConfig
    def __init__(self, config):
        super().__init__(config)
        self.transformer = TransformerDecoderLM(
            num_layers=config.num_layers,
            d_model=config.d_model,
            n_heads=config.n_heads,
            dim_feedforward=config.dim_feedforward,
            dropout=config.dropout,
            vocab_size=config.vocab_size,
            group_size=config.group_size
        )

    def forward(self, input_ids, labels=None):
        logits = self.transformer(input_ids)
        
        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
        
        return {"loss": loss, "logits": logits}