SentenceTransformer based on sentence-transformers/LaBSE
This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/LaBSE
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Генри Джастис Форд',
'Форд, Генри Джастис',
'Я вышел из ванны свеж и бодр, как будто собирался на бал.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,000,000 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 21.82 tokens
- max: 127 tokens
- min: 4 tokens
- mean: 21.16 tokens
- max: 136 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
sentence_0 sentence_1 label Темех мар.
Дело десятое.
1.0
Уругвайӑн тĕн ĕҫченĕсем
Религиозные деятели Уругвая
1.0
Эп аванах ас тӑватӑп, пилӗк ҫул каялла пахчана эпир лайӑх тасатнӑччӗ.
А пять лет тому назад я знал, что сад был чищен.
1.0
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 12per_device_eval_batch_size
: 12num_train_epochs
: 1fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 12per_device_eval_batch_size
: 12per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0012 | 100 | - |
0.0024 | 200 | - |
0.0036 | 300 | - |
0.0048 | 400 | - |
0.0060 | 500 | 0.5331 |
0.0072 | 600 | - |
0.0084 | 700 | - |
0.0096 | 800 | - |
0.0108 | 900 | - |
0.0120 | 1000 | 0.3694 |
0.0132 | 1100 | - |
0.0144 | 1200 | - |
0.0156 | 1300 | - |
0.0168 | 1400 | - |
0.0180 | 1500 | 0.3141 |
0.0192 | 1600 | - |
0.0204 | 1700 | - |
0.0216 | 1800 | - |
0.0228 | 1900 | - |
0.0240 | 2000 | 0.2836 |
0.0252 | 2100 | - |
0.0264 | 2200 | - |
0.0276 | 2300 | - |
0.0288 | 2400 | - |
0.0300 | 2500 | 0.2823 |
0.0312 | 2600 | - |
0.0324 | 2700 | - |
0.0336 | 2800 | - |
0.0348 | 2900 | - |
0.0360 | 3000 | 0.265 |
0.0372 | 3100 | - |
0.0384 | 3200 | - |
0.0396 | 3300 | - |
0.0408 | 3400 | - |
0.0420 | 3500 | 0.2599 |
0.0432 | 3600 | - |
0.0444 | 3700 | - |
0.0456 | 3800 | - |
0.0468 | 3900 | - |
0.0480 | 4000 | 0.234 |
0.0492 | 4100 | - |
0.0504 | 4200 | - |
0.0516 | 4300 | - |
0.0528 | 4400 | - |
0.0540 | 4500 | 0.1966 |
0.0552 | 4600 | - |
0.0564 | 4700 | - |
0.0576 | 4800 | - |
0.0588 | 4900 | - |
0.0600 | 5000 | 0.2204 |
0.0612 | 5100 | - |
0.0624 | 5200 | - |
0.0636 | 5300 | - |
0.0648 | 5400 | - |
0.0660 | 5500 | 0.2272 |
0.0672 | 5600 | - |
0.0684 | 5700 | - |
0.0696 | 5800 | - |
0.0708 | 5900 | - |
0.0720 | 6000 | 0.2256 |
0.0732 | 6100 | - |
0.0744 | 6200 | - |
0.0756 | 6300 | - |
0.0768 | 6400 | - |
0.0780 | 6500 | 0.2071 |
0.0792 | 6600 | - |
0.0804 | 6700 | - |
0.0816 | 6800 | - |
0.0828 | 6900 | - |
0.0840 | 7000 | 0.2113 |
0.0852 | 7100 | - |
0.0864 | 7200 | - |
0.0876 | 7300 | - |
0.0888 | 7400 | - |
0.0900 | 7500 | 0.2222 |
0.0912 | 7600 | - |
0.0924 | 7700 | - |
0.0936 | 7800 | - |
0.0948 | 7900 | - |
0.0960 | 8000 | 0.2186 |
0.0972 | 8100 | - |
0.0984 | 8200 | - |
0.0996 | 8300 | - |
0.1008 | 8400 | - |
0.1020 | 8500 | 0.2137 |
0.1032 | 8600 | - |
0.1044 | 8700 | - |
0.1056 | 8800 | - |
0.1068 | 8900 | - |
0.1080 | 9000 | 0.1928 |
0.1092 | 9100 | - |
0.1104 | 9200 | - |
0.1116 | 9300 | - |
0.1128 | 9400 | - |
0.1140 | 9500 | 0.2117 |
0.1152 | 9600 | - |
0.1164 | 9700 | - |
0.1176 | 9800 | - |
0.1188 | 9900 | - |
0.1200 | 10000 | 0.1987 |
0.1212 | 10100 | - |
0.1224 | 10200 | - |
0.1236 | 10300 | - |
0.1248 | 10400 | - |
0.1260 | 10500 | 0.2011 |
0.1272 | 10600 | - |
0.1284 | 10700 | - |
0.1296 | 10800 | - |
0.1308 | 10900 | - |
0.1320 | 11000 | 0.1775 |
0.1332 | 11100 | - |
0.1344 | 11200 | - |
0.1356 | 11300 | - |
0.1368 | 11400 | - |
0.1380 | 11500 | 0.2048 |
0.1392 | 11600 | - |
0.1404 | 11700 | - |
0.1416 | 11800 | - |
0.1428 | 11900 | - |
0.1440 | 12000 | 0.2064 |
0.1452 | 12100 | - |
0.1464 | 12200 | - |
0.1476 | 12300 | - |
0.1488 | 12400 | - |
0.1500 | 12500 | 0.1883 |
0.1512 | 12600 | - |
0.1524 | 12700 | - |
0.1536 | 12800 | - |
0.1548 | 12900 | - |
0.1560 | 13000 | 0.2084 |
0.1572 | 13100 | - |
0.1584 | 13200 | - |
0.1596 | 13300 | - |
0.1608 | 13400 | - |
0.1620 | 13500 | 0.2077 |
0.1632 | 13600 | - |
0.1644 | 13700 | - |
0.1656 | 13800 | - |
0.1668 | 13900 | - |
0.1680 | 14000 | 0.1866 |
0.1692 | 14100 | - |
0.1704 | 14200 | - |
0.1716 | 14300 | - |
0.1728 | 14400 | - |
0.1740 | 14500 | 0.1859 |
0.1752 | 14600 | - |
0.1764 | 14700 | - |
0.1776 | 14800 | - |
0.1788 | 14900 | - |
0.1800 | 15000 | 0.1735 |
0.1812 | 15100 | - |
0.1824 | 15200 | - |
0.1836 | 15300 | - |
0.1848 | 15400 | - |
0.1860 | 15500 | 0.171 |
0.1872 | 15600 | - |
0.1884 | 15700 | - |
0.1896 | 15800 | - |
0.1908 | 15900 | - |
0.1920 | 16000 | 0.1465 |
0.1932 | 16100 | - |
0.1944 | 16200 | - |
0.1956 | 16300 | - |
0.1968 | 16400 | - |
0.1980 | 16500 | 0.1921 |
0.1992 | 16600 | - |
0.2004 | 16700 | - |
0.2016 | 16800 | - |
0.2028 | 16900 | - |
0.2040 | 17000 | 0.1669 |
0.2052 | 17100 | - |
0.2064 | 17200 | - |
0.2076 | 17300 | - |
0.2088 | 17400 | - |
0.2100 | 17500 | 0.1656 |
0.2112 | 17600 | - |
0.2124 | 17700 | - |
0.2136 | 17800 | - |
0.2148 | 17900 | - |
0.2160 | 18000 | 0.1952 |
0.2172 | 18100 | - |
0.2184 | 18200 | - |
0.2196 | 18300 | - |
0.2208 | 18400 | - |
0.2220 | 18500 | 0.1658 |
0.2232 | 18600 | - |
0.2244 | 18700 | - |
0.2256 | 18800 | - |
0.2268 | 18900 | - |
0.2280 | 19000 | 0.1774 |
0.2292 | 19100 | - |
0.2304 | 19200 | - |
0.2316 | 19300 | - |
0.2328 | 19400 | - |
0.2340 | 19500 | 0.1802 |
0.2352 | 19600 | - |
0.2364 | 19700 | - |
0.2376 | 19800 | - |
0.2388 | 19900 | - |
0.2400 | 20000 | 0.1724 |
0.2412 | 20100 | - |
0.2424 | 20200 | - |
0.2436 | 20300 | - |
0.2448 | 20400 | - |
0.2460 | 20500 | 0.1653 |
0.2472 | 20600 | - |
0.2484 | 20700 | - |
0.2496 | 20800 | - |
0.2508 | 20900 | - |
0.2520 | 21000 | 0.1484 |
0.2532 | 21100 | - |
0.2544 | 21200 | - |
0.2556 | 21300 | - |
0.2568 | 21400 | - |
0.2580 | 21500 | 0.1544 |
0.2592 | 21600 | - |
0.2604 | 21700 | - |
0.2616 | 21800 | - |
0.2628 | 21900 | - |
0.2640 | 22000 | 0.174 |
0.2652 | 22100 | - |
0.2664 | 22200 | - |
0.2676 | 22300 | - |
0.2688 | 22400 | - |
0.2700 | 22500 | 0.1488 |
0.2712 | 22600 | - |
0.2724 | 22700 | - |
0.2736 | 22800 | - |
0.2748 | 22900 | - |
0.2760 | 23000 | 0.1696 |
0.2772 | 23100 | - |
0.2784 | 23200 | - |
0.2796 | 23300 | - |
0.2808 | 23400 | - |
0.2820 | 23500 | 0.1468 |
0.2832 | 23600 | - |
0.2844 | 23700 | - |
0.2856 | 23800 | - |
0.2868 | 23900 | - |
0.2880 | 24000 | 0.1738 |
0.2892 | 24100 | - |
0.2904 | 24200 | - |
0.2916 | 24300 | - |
0.2928 | 24400 | - |
0.2940 | 24500 | 0.1667 |
0.2952 | 24600 | - |
0.2964 | 24700 | - |
0.2976 | 24800 | - |
0.2988 | 24900 | - |
0.3000 | 25000 | 0.1562 |
0.3012 | 25100 | - |
0.3024 | 25200 | - |
0.3036 | 25300 | - |
0.3048 | 25400 | - |
0.3060 | 25500 | 0.1628 |
0.3072 | 25600 | - |
0.3084 | 25700 | - |
0.3096 | 25800 | - |
0.3108 | 25900 | - |
0.3120 | 26000 | 0.1392 |
0.3132 | 26100 | - |
0.3144 | 26200 | - |
0.3156 | 26300 | - |
0.3168 | 26400 | - |
0.3180 | 26500 | 0.1507 |
0.3192 | 26600 | - |
0.3204 | 26700 | - |
0.3216 | 26800 | - |
0.3228 | 26900 | - |
0.3240 | 27000 | 0.1646 |
0.3252 | 27100 | - |
0.3264 | 27200 | - |
0.3276 | 27300 | - |
0.3288 | 27400 | - |
0.3300 | 27500 | 0.1433 |
0.3312 | 27600 | - |
0.3324 | 27700 | - |
0.3336 | 27800 | - |
0.3348 | 27900 | - |
0.3360 | 28000 | 0.1689 |
0.3372 | 28100 | - |
0.3384 | 28200 | - |
0.3396 | 28300 | - |
0.3408 | 28400 | - |
0.3420 | 28500 | 0.1432 |
0.3432 | 28600 | - |
0.3444 | 28700 | - |
0.3456 | 28800 | - |
0.3468 | 28900 | - |
0.3480 | 29000 | 0.1534 |
0.3492 | 29100 | - |
0.3504 | 29200 | - |
0.3516 | 29300 | - |
0.3528 | 29400 | - |
0.3540 | 29500 | 0.1487 |
0.3552 | 29600 | - |
0.3564 | 29700 | - |
0.3576 | 29800 | - |
0.3588 | 29900 | - |
0.3600 | 30000 | 0.1439 |
0.3612 | 30100 | - |
0.3624 | 30200 | - |
0.3636 | 30300 | - |
0.3648 | 30400 | - |
0.3660 | 30500 | 0.1397 |
0.3672 | 30600 | - |
0.3684 | 30700 | - |
0.3696 | 30800 | - |
0.3708 | 30900 | - |
0.3720 | 31000 | 0.1542 |
0.3732 | 31100 | - |
0.3744 | 31200 | - |
0.3756 | 31300 | - |
0.3768 | 31400 | - |
0.3780 | 31500 | 0.1448 |
0.3792 | 31600 | - |
0.3804 | 31700 | - |
0.3816 | 31800 | - |
0.3828 | 31900 | - |
0.3840 | 32000 | 0.1608 |
0.3852 | 32100 | - |
0.3864 | 32200 | - |
0.3876 | 32300 | - |
0.3888 | 32400 | - |
0.3900 | 32500 | 0.1486 |
0.3912 | 32600 | - |
0.3924 | 32700 | - |
0.3936 | 32800 | - |
0.3948 | 32900 | - |
0.3960 | 33000 | 0.1274 |
0.3972 | 33100 | - |
0.3984 | 33200 | - |
0.3996 | 33300 | - |
0.4008 | 33400 | - |
0.4020 | 33500 | 0.1451 |
0.4032 | 33600 | - |
0.4044 | 33700 | - |
0.4056 | 33800 | - |
0.4068 | 33900 | - |
0.4080 | 34000 | 0.1316 |
0.4092 | 34100 | - |
0.4104 | 34200 | - |
0.4116 | 34300 | - |
0.4128 | 34400 | - |
0.4140 | 34500 | 0.1306 |
0.4152 | 34600 | - |
0.4164 | 34700 | - |
0.4176 | 34800 | - |
0.4188 | 34900 | - |
0.4200 | 35000 | 0.1382 |
0.4212 | 35100 | - |
0.4224 | 35200 | - |
0.4236 | 35300 | - |
0.4248 | 35400 | - |
0.4260 | 35500 | 0.1322 |
0.4272 | 35600 | - |
0.4284 | 35700 | - |
0.4296 | 35800 | - |
0.4308 | 35900 | - |
0.4320 | 36000 | 0.1617 |
0.4332 | 36100 | - |
0.4344 | 36200 | - |
0.4356 | 36300 | - |
0.4368 | 36400 | - |
0.4380 | 36500 | 0.14 |
0.4392 | 36600 | - |
0.4404 | 36700 | - |
0.4416 | 36800 | - |
0.4428 | 36900 | - |
0.4440 | 37000 | 0.1321 |
0.4452 | 37100 | - |
0.4464 | 37200 | - |
0.4476 | 37300 | - |
0.4488 | 37400 | - |
0.4500 | 37500 | 0.1464 |
0.4512 | 37600 | - |
0.4524 | 37700 | - |
0.4536 | 37800 | - |
0.4548 | 37900 | - |
0.4560 | 38000 | 0.1236 |
0.4572 | 38100 | - |
0.4584 | 38200 | - |
0.4596 | 38300 | - |
0.4608 | 38400 | - |
0.4620 | 38500 | 0.147 |
0.4632 | 38600 | - |
0.4644 | 38700 | - |
0.4656 | 38800 | - |
0.4668 | 38900 | - |
0.4680 | 39000 | 0.1376 |
0.4692 | 39100 | - |
0.4704 | 39200 | - |
0.4716 | 39300 | - |
0.4728 | 39400 | - |
0.4740 | 39500 | 0.1342 |
0.4752 | 39600 | - |
0.4764 | 39700 | - |
0.4776 | 39800 | - |
0.4788 | 39900 | - |
0.4800 | 40000 | 0.123 |
0.4812 | 40100 | - |
0.4824 | 40200 | - |
0.4836 | 40300 | - |
0.4848 | 40400 | - |
0.4860 | 40500 | 0.1312 |
0.4872 | 40600 | - |
0.4884 | 40700 | - |
0.4896 | 40800 | - |
0.4908 | 40900 | - |
0.4920 | 41000 | 0.1325 |
0.4932 | 41100 | - |
0.4944 | 41200 | - |
0.4956 | 41300 | - |
0.4968 | 41400 | - |
0.4980 | 41500 | 0.1203 |
0.4992 | 41600 | - |
0.5004 | 41700 | - |
0.5016 | 41800 | - |
0.5028 | 41900 | - |
0.5040 | 42000 | 0.1258 |
0.5052 | 42100 | - |
0.5064 | 42200 | - |
0.5076 | 42300 | - |
0.5088 | 42400 | - |
0.5100 | 42500 | 0.141 |
0.5112 | 42600 | - |
0.5124 | 42700 | - |
0.5136 | 42800 | - |
0.5148 | 42900 | - |
0.5160 | 43000 | 0.1473 |
0.5172 | 43100 | - |
0.5184 | 43200 | - |
0.5196 | 43300 | - |
0.5208 | 43400 | - |
0.5220 | 43500 | 0.1247 |
0.5232 | 43600 | - |
0.5244 | 43700 | - |
0.5256 | 43800 | - |
0.5268 | 43900 | - |
0.5280 | 44000 | 0.1259 |
0.5292 | 44100 | - |
0.5304 | 44200 | - |
0.5316 | 44300 | - |
0.5328 | 44400 | - |
0.5340 | 44500 | 0.1372 |
0.5352 | 44600 | - |
0.5364 | 44700 | - |
0.5376 | 44800 | - |
0.5388 | 44900 | - |
0.5400 | 45000 | 0.1413 |
0.5412 | 45100 | - |
0.5424 | 45200 | - |
0.5436 | 45300 | - |
0.5448 | 45400 | - |
0.5460 | 45500 | 0.1157 |
0.5472 | 45600 | - |
0.5484 | 45700 | - |
0.5496 | 45800 | - |
0.5508 | 45900 | - |
0.5520 | 46000 | 0.127 |
0.5532 | 46100 | - |
0.5544 | 46200 | - |
0.5556 | 46300 | - |
0.5568 | 46400 | - |
0.5580 | 46500 | 0.1202 |
0.5592 | 46600 | - |
0.5604 | 46700 | - |
0.5616 | 46800 | - |
0.5628 | 46900 | - |
0.5640 | 47000 | 0.1199 |
0.5652 | 47100 | - |
0.5664 | 47200 | - |
0.5676 | 47300 | - |
0.5688 | 47400 | - |
0.5700 | 47500 | 0.1309 |
0.5712 | 47600 | - |
0.5724 | 47700 | - |
0.5736 | 47800 | - |
0.5748 | 47900 | - |
0.5760 | 48000 | 0.1276 |
0.5772 | 48100 | - |
0.5784 | 48200 | - |
0.5796 | 48300 | - |
0.5808 | 48400 | - |
0.5820 | 48500 | 0.1278 |
0.5832 | 48600 | - |
0.5844 | 48700 | - |
0.5856 | 48800 | - |
0.5868 | 48900 | - |
0.5880 | 49000 | 0.1175 |
0.5892 | 49100 | - |
0.5904 | 49200 | - |
0.5916 | 49300 | - |
0.5928 | 49400 | - |
0.5940 | 49500 | 0.1327 |
0.5952 | 49600 | - |
0.5964 | 49700 | - |
0.5976 | 49800 | - |
0.5988 | 49900 | - |
0.6000 | 50000 | 0.1109 |
0.6012 | 50100 | - |
0.6024 | 50200 | - |
0.6036 | 50300 | - |
0.6048 | 50400 | - |
0.6060 | 50500 | 0.1248 |
0.6072 | 50600 | - |
0.6084 | 50700 | - |
0.6096 | 50800 | - |
0.6108 | 50900 | - |
0.6120 | 51000 | 0.1296 |
0.6132 | 51100 | - |
0.6144 | 51200 | - |
0.6156 | 51300 | - |
0.6168 | 51400 | - |
0.6180 | 51500 | 0.1323 |
0.6192 | 51600 | - |
0.6204 | 51700 | - |
0.6216 | 51800 | - |
0.6228 | 51900 | - |
0.6240 | 52000 | 0.1155 |
0.6252 | 52100 | - |
0.6264 | 52200 | - |
0.6276 | 52300 | - |
0.6288 | 52400 | - |
0.6300 | 52500 | 0.1245 |
0.6312 | 52600 | - |
0.6324 | 52700 | - |
0.6336 | 52800 | - |
0.6348 | 52900 | - |
0.6360 | 53000 | 0.1238 |
0.6372 | 53100 | - |
0.6384 | 53200 | - |
0.6396 | 53300 | - |
0.6408 | 53400 | - |
0.6420 | 53500 | 0.12 |
0.6432 | 53600 | - |
0.6444 | 53700 | - |
0.6456 | 53800 | - |
0.6468 | 53900 | - |
0.6480 | 54000 | 0.1116 |
0.6492 | 54100 | - |
0.6504 | 54200 | - |
0.6516 | 54300 | - |
0.6528 | 54400 | - |
0.6540 | 54500 | 0.1305 |
0.6552 | 54600 | - |
0.6564 | 54700 | - |
0.6576 | 54800 | - |
0.6588 | 54900 | - |
0.6600 | 55000 | 0.1355 |
0.6612 | 55100 | - |
0.6624 | 55200 | - |
0.6636 | 55300 | - |
0.6648 | 55400 | - |
0.6660 | 55500 | 0.1139 |
0.6672 | 55600 | - |
0.6684 | 55700 | - |
0.6696 | 55800 | - |
0.6708 | 55900 | - |
0.6720 | 56000 | 0.1251 |
0.6732 | 56100 | - |
0.6744 | 56200 | - |
0.6756 | 56300 | - |
0.6768 | 56400 | - |
0.6780 | 56500 | 0.1211 |
0.6792 | 56600 | - |
0.6804 | 56700 | - |
0.6816 | 56800 | - |
0.6828 | 56900 | - |
0.6840 | 57000 | 0.1123 |
0.6852 | 57100 | - |
0.6864 | 57200 | - |
0.6876 | 57300 | - |
0.6888 | 57400 | - |
0.6900 | 57500 | 0.1071 |
0.6912 | 57600 | - |
0.6924 | 57700 | - |
0.6936 | 57800 | - |
0.6948 | 57900 | - |
0.6960 | 58000 | 0.112 |
0.6972 | 58100 | - |
0.6984 | 58200 | - |
0.6996 | 58300 | - |
0.7008 | 58400 | - |
0.7020 | 58500 | 0.1038 |
0.7032 | 58600 | - |
0.7044 | 58700 | - |
0.7056 | 58800 | - |
0.7068 | 58900 | - |
0.7080 | 59000 | 0.1238 |
0.7092 | 59100 | - |
0.7104 | 59200 | - |
0.7116 | 59300 | - |
0.7128 | 59400 | - |
0.7140 | 59500 | 0.1001 |
0.7152 | 59600 | - |
0.7164 | 59700 | - |
0.7176 | 59800 | - |
0.7188 | 59900 | - |
0.7200 | 60000 | 0.0948 |
0.7212 | 60100 | - |
0.7224 | 60200 | - |
0.7236 | 60300 | - |
0.7248 | 60400 | - |
0.7260 | 60500 | 0.1271 |
0.7272 | 60600 | - |
0.7284 | 60700 | - |
0.7296 | 60800 | - |
0.7308 | 60900 | - |
0.7320 | 61000 | 0.1117 |
0.7332 | 61100 | - |
0.7344 | 61200 | - |
0.7356 | 61300 | - |
0.7368 | 61400 | - |
0.7380 | 61500 | 0.1122 |
0.7392 | 61600 | - |
0.7404 | 61700 | - |
0.7416 | 61800 | - |
0.7428 | 61900 | - |
0.7440 | 62000 | 0.0972 |
0.7452 | 62100 | - |
0.7464 | 62200 | - |
0.7476 | 62300 | - |
0.7488 | 62400 | - |
0.7500 | 62500 | 0.1135 |
0.7512 | 62600 | - |
0.7524 | 62700 | - |
0.7536 | 62800 | - |
0.7548 | 62900 | - |
0.7560 | 63000 | 0.1092 |
0.7572 | 63100 | - |
0.7584 | 63200 | - |
0.7596 | 63300 | - |
0.7608 | 63400 | - |
0.7620 | 63500 | 0.1155 |
0.7632 | 63600 | - |
0.7644 | 63700 | - |
0.7656 | 63800 | - |
0.7668 | 63900 | - |
0.7680 | 64000 | 0.1065 |
0.7692 | 64100 | - |
0.7704 | 64200 | - |
0.7716 | 64300 | - |
0.7728 | 64400 | - |
0.7740 | 64500 | 0.1211 |
0.7752 | 64600 | - |
0.7764 | 64700 | - |
0.7776 | 64800 | - |
0.7788 | 64900 | - |
0.7800 | 65000 | 0.116 |
0.7812 | 65100 | - |
0.7824 | 65200 | - |
0.7836 | 65300 | - |
0.7848 | 65400 | - |
0.7860 | 65500 | 0.1138 |
0.7872 | 65600 | - |
0.7884 | 65700 | - |
0.7896 | 65800 | - |
0.7908 | 65900 | - |
0.7920 | 66000 | 0.1155 |
0.7932 | 66100 | - |
0.7944 | 66200 | - |
0.7956 | 66300 | - |
0.7968 | 66400 | - |
0.7980 | 66500 | 0.1059 |
0.7992 | 66600 | - |
0.8004 | 66700 | - |
0.8016 | 66800 | - |
0.8028 | 66900 | - |
0.8040 | 67000 | 0.1189 |
0.8052 | 67100 | - |
0.8064 | 67200 | - |
0.8076 | 67300 | - |
0.8088 | 67400 | - |
0.8100 | 67500 | 0.1089 |
0.8112 | 67600 | - |
0.8124 | 67700 | - |
0.8136 | 67800 | - |
0.8148 | 67900 | - |
0.8160 | 68000 | 0.1016 |
0.8172 | 68100 | - |
0.8184 | 68200 | - |
0.8196 | 68300 | - |
0.8208 | 68400 | - |
0.8220 | 68500 | 0.121 |
0.8232 | 68600 | - |
0.8244 | 68700 | - |
0.8256 | 68800 | - |
0.8268 | 68900 | - |
0.8280 | 69000 | 0.1185 |
0.8292 | 69100 | - |
0.8304 | 69200 | - |
0.8316 | 69300 | - |
0.8328 | 69400 | - |
0.8340 | 69500 | 0.1026 |
0.8352 | 69600 | - |
0.8364 | 69700 | - |
0.8376 | 69800 | - |
0.8388 | 69900 | - |
0.8400 | 70000 | 0.1209 |
0.8412 | 70100 | - |
0.8424 | 70200 | - |
0.8436 | 70300 | - |
0.8448 | 70400 | - |
0.8460 | 70500 | 0.1103 |
0.8472 | 70600 | - |
0.8484 | 70700 | - |
0.8496 | 70800 | - |
0.8508 | 70900 | - |
0.8520 | 71000 | 0.1098 |
0.8532 | 71100 | - |
0.8544 | 71200 | - |
0.8556 | 71300 | - |
0.8568 | 71400 | - |
0.8580 | 71500 | 0.1055 |
0.8592 | 71600 | - |
0.8604 | 71700 | - |
0.8616 | 71800 | - |
0.8628 | 71900 | - |
0.8640 | 72000 | 0.1045 |
0.8652 | 72100 | - |
0.8664 | 72200 | - |
0.8676 | 72300 | - |
0.8688 | 72400 | - |
0.8700 | 72500 | 0.1126 |
0.8712 | 72600 | - |
0.8724 | 72700 | - |
0.8736 | 72800 | - |
0.8748 | 72900 | - |
0.8760 | 73000 | 0.1058 |
0.8772 | 73100 | - |
0.8784 | 73200 | - |
0.8796 | 73300 | - |
0.8808 | 73400 | - |
0.8820 | 73500 | 0.1138 |
0.8832 | 73600 | - |
0.8844 | 73700 | - |
0.8856 | 73800 | - |
0.8868 | 73900 | - |
0.8880 | 74000 | 0.1071 |
0.8892 | 74100 | - |
0.8904 | 74200 | - |
0.8916 | 74300 | - |
0.8928 | 74400 | - |
0.8940 | 74500 | 0.1091 |
0.8952 | 74600 | - |
0.8964 | 74700 | - |
0.8976 | 74800 | - |
0.8988 | 74900 | - |
0.9000 | 75000 | 0.1143 |
0.9012 | 75100 | - |
0.9024 | 75200 | - |
Framework Versions
- Python: 3.12.10
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Model tree for lingtrain/labse-chuvash-2
Base model
sentence-transformers/LaBSE