See axolotl config
axolotl version: 0.4.0
# base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
base_model: mistralai/Mistral-7B-Instruct-v0.2
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: ./data/tool_used_training.jsonl
type: sharegpt
- path: ./data/tool_not_used_training.jsonl
type: sharegpt
- path: ./data/no_tools_training.jsonl
type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./mistral-instruct-qlora-v3
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
# lora_target_modules:
# - gate_proj
# - down_proj
# - up_proj
# - q_proj
# - v_proj
# - k_proj
# - o_proj
wandb_project: function-call
wandb_name: mixtral-v1
wandb_log_model: end
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.001
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
# loss_watchdog_threshold: 5.0
# loss_watchdog_patience: 3
warmup_steps: 10
# evals_per_epoch: 20
eval_steps: 0.1
save_steps: 0.1
eval_table_size:
eval_max_new_tokens: 256
# saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 1.0
fsdp:
fsdp_config:
mistral-instruct-qlora-v3
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3293
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9129 | 0.02 | 1 | 0.9635 |
0.4847 | 0.11 | 7 | 0.4341 |
0.4377 | 0.22 | 14 | 0.3738 |
0.4026 | 0.32 | 21 | 0.3545 |
0.3536 | 0.43 | 28 | 0.3452 |
0.4092 | 0.54 | 35 | 0.3387 |
0.3917 | 0.65 | 42 | 0.3348 |
0.3754 | 0.76 | 49 | 0.3314 |
0.3779 | 0.86 | 56 | 0.3301 |
0.353 | 0.97 | 63 | 0.3293 |
Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.0
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for liuylhf/mistral-qlora-v3
Base model
mistralai/Mistral-7B-Instruct-v0.2