CodeBertForCodeSummary
This model is a fine-tuned version of microsoft/codebert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.3533
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 14400.0
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.051 | 1.0 | 750 | 4.6658 |
3.7963 | 2.0 | 1500 | 3.6102 |
3.2207 | 3.0 | 2250 | 2.9757 |
2.7558 | 4.0 | 3000 | 2.5950 |
2.4409 | 5.0 | 3750 | 2.3054 |
2.188 | 6.0 | 4500 | 2.0653 |
1.9616 | 7.0 | 5250 | 1.8439 |
1.7515 | 8.0 | 6000 | 1.6953 |
1.6408 | 9.0 | 6750 | 1.5872 |
1.4843 | 10.0 | 7500 | 1.5153 |
1.4453 | 11.0 | 8250 | 1.4662 |
1.3443 | 12.0 | 9000 | 1.4222 |
1.2826 | 13.0 | 9750 | 1.3990 |
1.2005 | 14.0 | 10500 | 1.3829 |
1.1559 | 15.0 | 11250 | 1.3678 |
1.0938 | 16.0 | 12000 | 1.3504 |
1.0285 | 17.0 | 12750 | 1.3493 |
0.9802 | 18.0 | 13500 | 1.3568 |
0.9333 | 19.0 | 14250 | 1.3549 |
0.8453 | 20.0 | 15000 | 1.3533 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for ljcnju/CodeBertForCodeSummary
Base model
microsoft/codebert-base