license: mit
datasets:
- openai/summarize_from_feedback
- openai/webgpt_comparisons
- Dahoas/instruct-synthetic-prompt-responses
- Anthropic/hh-rlhf
- lmsys/chatbot_arena_conversations
- openbmb/UltraFeedback
metrics:
- accuracy
tags:
- pair-ranker
- pair_ranker
- reward_model
- reward-model
- pairrm
- pair-rm
- RLHF
language:
- en
Inspired by DeBERTa Reward Model Series
llm-blender/PairRM
is pairranker version finetuned specifically as a reward model using deberta-v3-large.
- Github: https://github.com/yuchenlin/LLM-Blender
- Paper: https://arxiv.org/abs/2306.02561
- Space Demo: https://huggingface.co/spaces/llm-blender/LLM-Blender
Usage Example
Installation
Since PairRanker contains some custom layers and tokens. We recommend use PairRM with our llm-blender code API.
- First install
llm-blender
pip install git+https://github.com/yuchenlin/LLM-Blender.git
- Then load pairranker with the following code:
import llm_blender
blender = llm_blender.Blender()
blender.loadranker("llm-blender/PairRM") # load PairRM
Use case 1: Compare responses (Quality Evaluator)
- Then you can rank candidate responses with the following function
inputs = ["input1", "input2"]
candidates_texts = [["candidate1 for input1", "candidatefor input1"], ["candidate1 for input2", "candidate2 for input2"]]
ranks = blender.rank(inputs, candidates_texts, return_scores=False, batch_size=2)
# ranks is a list of ranks where ranks[i][j] represents the ranks of candidate-j for input-i
- Directly compare two candidate responses
candidates_A = [cands[0] for cands in candidates]
candidates_B = [cands[1] for cands in candidates]
comparison_results = blender.compare(inputs, candidates_A, candidates_B)
# comparison_results is a list of bool, where element[i] denotes whether candidates_A[i] is better than candidates_B[i] for inputs[i]
- Directly compare two multi-turn conversations given that user's query in each turn are fiexed and responses are different.
conv1 = [
{
"content": "hello",
"role": "USER"
},
{
"content": "<assistant response>",
"role": "ASSISTANT"
},
...
]
conv2 = [
{
"content": "hello",
"role": "USER"
},
{
"content": "<assistant response>",
"role": "ASSISTANT"
},
...
]
comparison_results = blender.compare_conversations([conv1], [conv2])
# comparison_results is a list of bool, where each element denotes whether all the responses in conv1 together is better than that of conv2
Use case 2: Best-of-n sampling (Decoding Enhancing)
Best-of-n Sampling, aka, rejection sampling, is a strategy to enhance the response quality by selecting the one that was ranked highest by the reward model (Learn more atOpenAI WebGPT section 3.2 and OpenAI Blog).
Best-of-n sampling is a easy way to imporve your llm power with just a few lines of code. An example of applying on zephyr is as follows.
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
model = AutoModelForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-beta", device_map="auto")
inputs = [...] # your list of inputs
system_message = {
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
}
messages = [
[
system_message,
{"role": "user", "content": _input},
]
for _input in zip(inputs)
]
prompts = [tokenizer.apply_chat_template(m, tokenize=False, add_generation_prompt=True) for m in messages]
outputs = blender.best_of_n_generate(model, tokenizer, prompts, n=10)
print("### Prompt:")
print(prompts[0])
print("### best-of-n generations:")
print(outputs[0])
Use case 3: RLHF
PairRM has been trained on various high-quality and large-scale dataset with human preference annotations and exhibits great correlation with human preferences with an extremly small model size (0.4B), approching the performance of GPT-4.
We believe PairRM will power the alignment of LLM in an efficient and effective way.
With a blender.compare()
function, you can easily apply PairRM to poopular RLHF toolkits like trl.
🔥 Check more details on our example jupyter notebook usage: blender_usage.ipynb
Learn more in our LLM-Blender Github README.md
Statistics
Context length
PairRanker type | Source max length | Candidate max length | Total max length |
---|---|---|---|
pair-ranker | 128 | 128 | 384 |
PairRM (This model) | 1224 | 412 | 2048 |
Performance
PairRM has been trained on various high-quality and large-scale dataset with human preference annotations and exhibits great correlation with human preferences with an extremly small model size (0.4B), approching the performance of GPT-4.
We test the pairwise comparison on
Auto-J Pairwise test data performance
Model | Summ | Exam | Code | Rewriting | Crea W | Func W | Comm | NLP | Overall |
---|---|---|---|---|---|---|---|---|---|
Closed -source Models | |||||||||
ChatGPT | 33.3 | 40.3 | 36.6 | 31.6 | 48.2 | 40.4 | 47.6 | 45.8 | 42.7 |
Claude -2 | 30.6 | 36.1 | 41.7 | 34.2 | 48.1 | 42.5 | 40.6 | 48.5 | 42.4 |
GPT -4 | 59.7 | 51.4 | 69.2 | 58.3 | 66.7 | 60.4 | 58.3 | 65.2 | 61.9 |
Open -source Models | |||||||||
SteamSHP | 33.3 | 29.2 | 26.7 | 33.3 | 40.7 | 31.3 | 51.4 | 51.9 | 40.6 |
PandaLM | 29.2 | 33.3 | 31.7 | 23.3 | 43.5 | 32.9 | 44.8 | 48.9 | 38.9 |
LLaMA -2-Chat -13B | 20.8 | 27.8 | 19.2 | 20 | 31.5 | 27.5 | 35.8 | 31.8 | 29 |
Vicuna -13B-v1.5 | 30.6 | 23.6 | 35 | 28.3 | 36.1 | 37.5 | 45.5 | 39.8 | 37.3 |
WizardLM -13B-v1.2 | 22.2 | 20.8 | 32.5 | 19.2 | 28.7 | 25.4 | 29.2 | 33 | 27.8 |
LLAMA -2-chat -70B | 34.7 | 33.3 | 36.7 | 35.8 | 51.4 | 54.2 | 47.2 | 47.7 | 45.9 |
AUTO -J (13b) | 45.8 | 38.9 | 59.2 | 47.5 | 54.6 | 57.1 | 58 | 57.6 | 54.8 |
PairRM (0.4b) | 56.94 | 52.78 | 58.33 | 55.83 | 61.57 | 59.17 | 57.64 | 62.5 | 59.05 |
HHH-Alignment and MT-bench human judgements
Evaluator LM | HHH ALIGNMENT | MT BENCH HUMAN JUDG . | ||||
---|---|---|---|---|---|---|
Help . | Harm . | Hon . | Other | Total Avg . | Human Preference | |
RANDOM | 50 | 50 | 50 | 50 | 50 | 34.26 |
STANFORDNLP REWARD MODEL | 69.49 | 60.34 | 52.46 | 51.16 | 58.82 | 44.79 |
ALMOST REWARD MODEL | 74.58 | 67.24 | 78.69 | 86.05 | 76.02 | 49.9 |
LLAMA2 -CHAT 7B | 66.1 | 81.03 | 70.49 | 74.42 | 72.85 | 51.78 |
LLAMA2 -CHAT 13B | 74.58 | 87.93 | 55.74 | 79.07 | 73.76 | 52.34 |
LLAMA2 -CHAT 70B | 66.1 | 89.66 | 67.21 | 74.42 | 74.21 | 53.67 |
LLAMA2 -CHAT 13B+COARSE . | 68.74 | 68.97 | 65.57 | 67.44 | 67.42 | 46.89 |
GPT -3.5-TURBO -0613 | 76.27 | 87.93 | 67.21 | 86.05 | 78.73 | 57.12 |
PROMETHEUS 7B | 69.49 | 84.48 | 78.69 | 90.7 | 80.09 | 55.14 |
PROMETHEUS 13B | 81.36 | 82.76 | 75.41 | 76.74 | 79.19 | 57.72 |
PairRM (0.4b) | 84.75 | 84.48 | 80.33 | 90.7 | 84.62 | 59 |
GPT -4-0613 | 91.53 | 93.1 | 85.25 | 83.72 | 88.69 | 63.87 |
While PairRM is a extremely small model (0.4B) based on deberta, the pairwise comparison aggrement performance approches GPT-4's performance!
Two reasons to attribute:
- Our PairRM specically designed model arch for pairwise comparison through bidirectional attention (See LLM-blender paper for more details)
- The high-quality and large-scale human preference annotation data it was train on (see training dataset list on this hugging face page)
Citation
If you are using PairRM in your research, please cite LLM-blender.
@inproceedings{llm-blender-2023,
title = "LLM-Blender: Ensembling Large Language Models with Pairwise Comparison and Generative Fusion",
author = "Jiang, Dongfu and Ren, Xiang and Lin, Bill Yuchen",
booktitle = "Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL 2023)",
year = "2023"
}