bling-phi-3.5-gguf

bling-phi-3.5-gguf is part of the BLING ("Best Little Instruct No-GPU") model series, RAG-instruct trained on top of a Microsoft Phi-3.5 base model, and 4_K_M quantized with GGUF for fast local inference.

Benchmark Tests

Evaluated against the benchmark test: RAG-Instruct-Benchmark-Tester
1 Test Run (temperature=0.0, sample=False) with 1 point for correct answer, 0.5 point for partial correct or blank / NF, 0.0 points for incorrect, and -1 points for hallucinations.

--Accuracy Score: 100 correct out of 100
--Not Found Classification: 85.0%
--Boolean: 95.0%
--Math/Logic: 90.0%
--Complex Questions (1-5): 4 (Above Average - multiple-choice, causal)
--Summarization Quality (1-5): 4 (Above Average)
--Hallucinations: No hallucinations observed in test runs.

For test run results (and good indicator of target use cases), please see the files ("core_rag_test" and "answer_sheet" in this repo).

Please note that this is the model version used in the test results to replicate the most common inference environment (rather than the original Pytorch version).

Note: compare results with bling-phi-3-gguf and bling-phi-2.

Model Description

  • Developed by: llmware
  • Model type: bling
  • Language(s) (NLP): English
  • License: Apache 2.0
  • Finetuned from model: Microsoft Phi-3.5

Uses

The intended use of BLING models is two-fold:

  1. Provide high-quality RAG-Instruct models designed for fact-based, no "hallucination" question-answering in connection with an enterprise RAG workflow.

  2. BLING models are fine-tuned on top of leading base foundation models, generally in the 1-3B+ range, and purposefully rolled-out across multiple base models to provide choices and "drop-in" replacements for RAG specific use cases.

Direct Use

BLING is designed for enterprise automation use cases, especially in knowledge-intensive industries, such as financial services, legal and regulatory industries with complex information sources.

BLING models have been trained for common RAG scenarios, specifically: question-answering, key-value extraction, and basic summarization as the core instruction types without the need for a lot of complex instruction verbiage - provide a text passage context, ask questions, and get clear fact-based responses.

Bias, Risks, and Limitations

Any model can provide inaccurate or incomplete information, and should be used in conjunction with appropriate safeguards and fact-checking mechanisms.

How to Get Started with the Model

To pull the model via API:

from huggingface_hub import snapshot_download           
snapshot_download("llmware/bling-phi-3.5-gguf", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)  

Load in your favorite GGUF inference engine, or try with llmware as follows:

from llmware.models import ModelCatalog  

# to load the model and make a basic inference
model = ModelCatalog().load_model("llmware/bling-phi-3.5-gguf", temperature=0.0, sample=False)
response = model.inference(query, add_context=text_sample)  

Details on the prompt wrapper and other configurations are on the config.json file in the files repository.

How to Get Started with the Model

The BLING model was fine-tuned with closed-context samples, which assume generally that the prompt consists of two sub-parts:

  1. Text Passage Context, and
  2. Specific question or instruction based on the text passage

To get the best results, package "my_prompt" as follows:

my_prompt = {{text_passage}} + "\n" + {{question/instruction}}

Model Card Contact

Darren Oberst & llmware team

Downloads last month
30
GGUF
Model size
3.82B params
Architecture
phi3
Hardware compatibility
Log In to view the estimation
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Collection including llmware/bling-phi-3.5-gguf