LLaVA-OneVision-1.5: Fully Open Framework for Democratized Multimodal Training
LLaVA-OneVision1.5 introduces a novel family of fully open-source Large Multimodal Models (LMMs) that achieves state-of-the-art performance with substantially lower cost through training on native resolution images.
Paper: LLaVA-OneVision-1.5: Fully Open Framework for Democratized Multimodal Training
Code: https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5
Demo: https://huggingface.co/spaces/lmms-lab/LLaVA-OneVision-1.5
NEWS
- 2025-09-30: Released a comprehensive Offline Data Pack documentation.
- 2025-09-30: Released the LLaVA-OneVision-1.5 Technical Report.
Introduction
LLaVA-OneVision1.5 introduces a novel family of fully open-source Large Multimodal Models (LMMs) that achieves state-of-the-art performance with substantially lower cost through training on native resolution images.
Superior Performance A family of fully open-source large multimodal models demonstrating
- Superior performance across multiple multimodal benchmarks
- outperforming Qwen2.5-VL in most evaluation tasks.
High-Quality Data at Scale Meticulously curated pre-training and SFT data with rigorous filtering and quality control.
- Concept-balanced, highly diverse, high-quality caption data
- Comprehensive instruction fine-tuning data covering a wide range of tasks
Ultra-Efficient Training Framework Complete end-to-end training framework designed for maximum efficiency:
- $16000 total budget for full model training on A100 GPUs ($0.6 per GPU/Hour)
- Built on MegatronLM with support for MoE, FP8, and long sequence parallelization
- Optimized codebase for cost-effective scaling
Fully Open Framework for community access and reproducibility:
- High-quality pre-training & SFT data
- Complete training framework & code
- Training recipes & configurations
- Comprehensive training logs & metrics
Models
Model | HF Link | Training Log |
---|---|---|
LLaVA-OV-1.5-4B-Instruct | π€ HF / 4B-Instruct | π Tensorboard |
LLaVA-OV-1.5-8B-Instruct | π€ HF / 8B-Instruct | π Tensorboard |
LLaVA-OV-1.5-4B-Base | π€ HF / 4B-Base | π Tensorboard |
LLaVA-OV-1.5-8B-Base | π€ HF / 8B-Base | Uploadingβ¦ |
Datasets
(a) The vocabulary coverage proportion in the LLaVA-OneVision-1.5 Mid-Training dataset before and after concept balancing. (b) Distribution of data sources within the LLaVA-OneVision-1.5 Mid-Training dataset. (c) Distribution of data sources within the LLaVA-OneVision-1.5 Insturct dataset.
Description | Link | Status |
---|---|---|
LLaVA-OV-1.5-Mid-Training-85M | π€HF / Mid-Training 85M | Uploadingβ¦ |
LLaVA-OV-1.5-Instruct | π€HF / Insturct-Data | Uploadingβ¦ |
Evaluation Results
All evaluations were conducted using lmms_eval.
Quick Start with HuggingFace
from transformers import AutoTokenizer, AutoProcessor, AutoModelForCausalLM
from qwen_vl_utils import process_vision_info
model_path = "lmms-lab/LLaVA-OneVision-1.5-8B-Instruct"
# default: Load the model on the available device(s)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype="auto", device_map="auto", trust_remote_code=True
)
# default processer
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
Evaluation
# pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git
accelerate launch --num_processes=8 --main_process_port 12399 -m lmms_eval \
--model=llava_onevision1_5 \
--model_args=pretrained=lmms-lab/LLaVA-OneVision-1.5-8B-Instruct,attn_implementation=flash_attention_2,max_pixels=3240000 \
--tasks=mmmu_val,mmmu_pro_standard,mmbench_en_test,mmerealworld,mmerealworld_cn,ai2d,ai2d_no_mask,vstar_bench,chartqa,charxiv,docvqa_test,mathvista_testmini,mmstar,scienceqa \
--batch_size=1
Quick Start Guide
1.π³ Docker (Recommended)
We strongly recommend using the docker environment for a seamless experience. The following instructions are tailored for the A100 80GB GPU environment.
# Clone repository
git clone https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5
cd LLaVA-OneVision-1.5
docker build -t llava_megatron:25.04 .
# Run container with -w to set working directory directly to the mounted volume
docker run -it --gpus all \
--ipc host --net host --privileged --cap-add IPC_LOCK \
--ulimit memlock=-1 --ulimit stack=67108864 --rm \
-v $(pwd):/workspace/LLaVA-OneVision-1.5 \
-w /workspace/LLaVA-OneVision-1.5 \
--name "llava_megatron_container" \
llava_megatron:25.04 /bin/bash
2. Checkpoint and Format Conversion
You have two options to get started with LLaVA-OneVision-1.5-stage-0:
Option 1: Download pre-trained model from HuggingFace
Download our LLaVA-OneVision-1.5-4B-stage0
model directly from HuggingFace.
Option 2: Merge initial weights yourself
Alternatively, you can merge the initial weights from the original ViT and LLM:
python ds/merge_model.py \
--vit_path DeepGlint-AI/rice-vit-large-patch14-560 \
--llm_path Qwen/Qwen3-4B-Instruct-2507 \
--output LLaVA-OneVision-1.5-4B-stage0
Note: When merging weights, the adapter component will be initialized with default values.
Convert the model from HuggingFace format to Megatron format:
AIAK_TRAINING_PATH=/workspace/LLaVA-OneVision-1.5 bash examples/llava_ov_1_5/convert/convert_4b_hf_to_mcore.sh \
LLaVA-OneVision-1.5-4B-stage0 \
LLaVA-OneVision-1.5-4B-stage0_mcore_tp1_pp1 \
1 1
3. Stage 1 Alignment-Training
Download LLaVA from LLaVA-558K-Webdataset.
# ============================================================
# Required environment variables:
# AIAK_TRAINING_PATH Root directory of the AIAK-Training-LLM project
# DATA_PATH Directory with WebDataset shards (.tar) for pretraining
# TOKENIZER_PATH Hugging Face tokenizer directory
# CHECKPOINT_PATH Megatron-formatted checkpoint directory (e.g., mcore TP1/PP1)
# SAVE_CKPT_PATH Output directory for saving training checkpoints
AIAK_TRAINING_PATH=/workspace/LLaVA-OneVision-1.5 \
DATA_PATH=LLaVA-558K-Webdataset \
TOKENIZER_PATH=LLaVA-OneVision-1.5-4B-stage0 \
CHECKPOINT_PATH=LLaVA-OneVision-1.5-4B-stage0_mcore_tp1_pp1 \
bash examples/llava_ov_1_5/quick_start/stage_1_alignment_llava_ov_4b.sh
4. Stage 1.5 Mid-Training
Download our lightweight packed subset from LLaVA-OneVision-1.5-Mid-Training-Quick-Start-3M-Webdataset.
# ============================================================
# Convert model to release format
bash examples/llava_ov_1_5/convert/convert_4b_mcore_to_release.sh \
stage_1_alignment_llava_ov_4b/iter_0002500/ \
stage_1_alignment_llava_ov_4b_release 1 1
# ============================================================
# Launch
AIAK_TRAINING_PATH=/workspace/LLaVA-OneVision-1.5 \
DATA_PATH=LLaVA-OneVision-1.5-Mid-Training-Quick-Start-3M-Webdataset \
TOKENIZER_PATH=LLaVA-OneVision-1.5-4B-stage0 \
CHECKPOINT_PATH=stage_1_alignment_llava_ov_4b_release \
bash examples/llava_ov_1_5/quick_start/stage_1.5_mid_training_llava_ov_4b.sh
5. Stage 2 Instruct-Training
Download LLaVA-NeXT-780k-webdataset at LLaVA-NeXT-780K Dataset.
# ============================================================
# Convert model to release format
bash examples/llava_ov_1_5/convert/convert_4b_mcore_to_release.sh \
stage_1.5_mid_training_llava_ov_4b/iter_0020000/ \
stage_1.5_mid_training_llava_ov_4b_release 1 1
# ============================================================
# # Launch
AIAK_TRAINING_PATH=/workspace/LLaVA-OneVision-1.5 \
DATA_PATH=LLaVA-NeXT-780k-Webdataset \
TOKENIZER_PATH=LLaVA-OneVision-1.5-4B-stage0 \
CHECKPOINT_PATH=stage_1.5_mid_training_llava_ov_4b_release \
bash examples/llava_ov_1_5/quick_start/stage_2_instruct_llava_ov_4b.sh
6. Convert mcore to huggingface
AIAK_TRAINING_PATH=/workspace/LLaVA-OneVision-1.5 \
bash examples/llava_ov_1_5/convert/convert_4b_mcore_to_hf.sh \
stage_2_instruct_llava_ov_4b/iter_0003500 \
LLaVA-OneVision-1.5-4B-3M-Mid-Training-780K-Instruct \
1 1
# Copy non-model files (e.g., tokenizer config) to the new directory
find LLaVA-OneVision-1.5-4B-stage0/ -type f -not -iname '*safetensors*' -exec cp {} LLaVA-OneVision-1.5-4B-3M-Mid-Training-780K-Instruct/ ';'
7. Evaluation
# pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git
CUDA_VISIBLE_DEVICES=4,5,6,7 accelerate launch \
--num_processes=4 --main_process_port 12399 -m lmms_eval --model=llava_onevision1_5 --batch_size=1 --tasks=mme \
--model_args=pretrained=/workspace/LLaVA-OneVision-1.5/LLaVA-OneVision-1.5-4B-3M-Mid-Training-780K-Instruct,max_pixels=3240000
Fully Reproducing Guide
More detailed reproduction steps for the complete process will be provided after the dataset upload is completed.
Mid-Training
To improve model training efficiency, we implement offline sample packing:
- Download the Mid-Training-85M Dataset
- Pack the data into webdataset format, refer to Examples offlinepacking and Offline Padding-Free Data Packing
Instruct
- Download the LLaVA-OneVision-1.5-Insturct-Data
- Convert the data into webdataset format, refer to Conversion for Mixed Instruction Data
Roadmaps
Q4 2025 Key Deliverables:
- Ultra-efficient MoE Training
- Full Video Input LLM
Contributors
Thanks so much to all of our amazing contributors!
fdcp |
anxiangsir |
yiyexy |
wideyard |
chengzheng345 |
killTheHostage |
mathCrazyy |
yunglechao |
RobitYadda |
Citation
If you find LLaVA-OneVision-1.5 useful in your research, please consider to cite the following related papers:
@inproceedings{LLaVA-OneVision-1.5,
title={LLaVA-OneVision-1.5: Fully Open Framework for Democratized Multimodal Training},
author={An, Xiang and Xie, Yin and Yang, Kaicheng and Zhang, Wenkang and Zhao, Xiuwei and Cheng, Zheng and Wang, Yirui and Xu, Songcen and Chen, Changrui and Wu, Chunsheng and Tan, Huajie and Li, Chunyuan and Yang, Jing and Yu, Jie and Wang, Xiyao and Qin, Bin and Wang, Yumeng and Yan, Zizhen and Feng, Ziyong and Liu, Ziwei and Li, Bo and Deng, Jiankang},
booktitle={arxiv},
year={2025}
}
@inproceedings{xie2025region,
title={Region-based Cluster Discrimination for Visual Representation Learning},
author={Xie, Yin and Yang, Kaicheng and An, Xiang and Wu, Kun and Zhao, Yongle and Deng, Weimo and Ran, Zimin and Wang, Yumeng and Feng, Ziyong and Miles, Roy and Elezi, Ismail and Deng, Jiankang},
booktitle={ICCV},
year={2025}
}
@article{lillava,
title={LLaVA-OneVision: Easy Visual Task Transfer},
author={Li, Bo and Zhang, Yuanhan and Guo, Dong and Zhang, Renrui and Li, Feng and Zhang, Hao and Zhang, Kaichen and Zhang, Peiyuan and Li, Yanwei and Liu, Ziwei and Li, Chunyuan},
journal={Transactions on Machine Learning Research}
year={2024}
}
Acknowledgement
We extend our sincere gratitude to AIAK team of the Baige AI computing platform from Baidu AI Cloud for providing the exceptional training framework. The outstanding capabilities of AIAK-Training-LLM and AIAK-Megatron have significantly accelerated our training process with remarkable efficiency. These cutting-edge frameworks have been instrumental in achieving our research goals. To get full AIAK support, you can contact Baidu Cloud.
We also thank the maintainers and contributors of the following open-source projects, whose work greatly inspired and supported our research:
- LLaVA: Large Language-and-Vision Assistant β LLaVA
- LLaVA-NeXT: Next-generation multi-modal assistant β LLaVA-NeXT
- lmms-eval: A standardized evaluation framework for Large Multimodal Models β lmms-eval
- Megatron-LM: Efficient, scalable training for large language models β Megatron-LM
- Qwen2.5-VL: Strong vision-language foundation model β Qwen2.5-VL
- InternVL: Open-source large-scale vision-language foundation model β InternVL
- Qwen3: Next-generation Qwen LLM β Qwen
- MetaCLIP: Scalable contrastive pretraining β MetaCLIP
- FineVision: Open Data Is All You Need β FineVision
- Downloads last month
- 101
Model tree for lmms-lab/LLaVA-OneVision-1.5-4B-Base
Base model
DeepGlint-AI/rice-vit-large-patch14-560