YAML Metadata Warning: The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

Model Card of lmqg/t5-base-tweetqa-qag

This model is fine-tuned version of t5-base for question & answer pair generation task on the lmqg/qag_tweetqa (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="lmqg/t5-base-tweetqa-qag")

# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/t5-base-tweetqa-qag")
output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

Evaluation

Score Type Dataset
BERTScore 90.55 default lmqg/qag_tweetqa
Bleu_1 39.29 default lmqg/qag_tweetqa
Bleu_2 26.69 default lmqg/qag_tweetqa
Bleu_3 18.4 default lmqg/qag_tweetqa
Bleu_4 12.93 default lmqg/qag_tweetqa
METEOR 30.35 default lmqg/qag_tweetqa
MoverScore 61.82 default lmqg/qag_tweetqa
QAAlignedF1Score (BERTScore) 92.37 default lmqg/qag_tweetqa
QAAlignedF1Score (MoverScore) 64.63 default lmqg/qag_tweetqa
QAAlignedPrecision (BERTScore) 92.75 default lmqg/qag_tweetqa
QAAlignedPrecision (MoverScore) 65.5 default lmqg/qag_tweetqa
QAAlignedRecall (BERTScore) 92.01 default lmqg/qag_tweetqa
QAAlignedRecall (MoverScore) 63.85 default lmqg/qag_tweetqa
ROUGE_L 36.54 default lmqg/qag_tweetqa

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qag_tweetqa
  • dataset_name: default
  • input_types: ['paragraph']
  • output_types: ['questions_answers']
  • prefix_types: ['qag']
  • model: t5-base
  • max_length: 256
  • max_length_output: 128
  • epoch: 15
  • batch: 32
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 2
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train lmqg/t5-base-tweetqa-qag

Evaluation results

  • BLEU4 (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    12.930
  • ROUGE-L (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    36.540
  • METEOR (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    30.350
  • BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    90.550
  • MoverScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    61.820
  • QAAlignedF1Score-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    92.370
  • QAAlignedRecall-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    92.010
  • QAAlignedPrecision-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    92.750
  • QAAlignedF1Score-MoverScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    64.630
  • QAAlignedRecall-MoverScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    63.850