Grafted-Hermetic-Platypus-B-2x7B
MoE merge of
Prompt Format
Both the default Mistral-Instruct tags and Alpaca are fine, so either:
<s>[INST] {sys_prompt} {instruction} [/INST]
or
{sys_prompt}
### Instruction:
{instruction}
### Response:
The tokenizer default is Alpaca this time around.
Usage
from transformers import AutoTokenizer
import transformers
import torch
model = "lodrick-the-lafted/Grafted-Hermetic-Platypus-A-2x7B"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.bfloat16},
)
messages = [{"role": "user", "content": "Give me a cooking recipe for an orange pie."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 64.65 |
AI2 Reasoning Challenge (25-Shot) | 59.47 |
HellaSwag (10-Shot) | 82.95 |
MMLU (5-Shot) | 62.15 |
TruthfulQA (0-shot) | 61.49 |
Winogrande (5-shot) | 77.43 |
GSM8k (5-shot) | 44.43 |
- Downloads last month
- 63
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for lodrick-the-lafted/Grafted-Hermetic-Platypus-B-2x7B
Datasets used to train lodrick-the-lafted/Grafted-Hermetic-Platypus-B-2x7B
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard59.470
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard82.950
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard62.150
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard61.490
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard77.430
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard44.430