whisper-medium-ru / README.md
lorenzoncina's picture
Update metadata with huggingface_hub
656efa7
metadata
language:
  - ru
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Medium Russian
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 ru
          type: mozilla-foundation/common_voice_11_0
          config: ru
          split: test
          args: ru
        metrics:
          - type: wer
            value: 7.562437929892964
            name: Wer
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: ru_ru
          split: test
        metrics:
          - type: wer
            value: 10.92
            name: WER

Whisper Medium Russian

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0 ru dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2253
  • Wer: 7.5624

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1578 0.1 1000 0.1662 8.8290
0.045 1.08 2000 0.1748 8.9148
0.0176 2.06 3000 0.1889 8.7848
0.0104 3.04 4000 0.1922 8.4354
0.0051 4.02 5000 0.2034 8.1865
0.0047 4.12 6000 0.2012 8.0455
0.0018 5.1 7000 0.2117 7.6237
0.0004 6.08 8000 0.2177 7.6078
0.0003 7.06 9000 0.2244 7.6262
0.0002 8.04 10000 0.2253 7.5624

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.1.dev0
  • Tokenizers 0.13.2