File size: 4,132 Bytes
0bbdad1
f3d6d17
 
0bbdad1
 
f3d6d17
0bbdad1
3aeee04
 
7b31889
3aeee04
0bbdad1
820f3a9
0bbdad1
7b31889
 
3aeee04
 
7b31889
 
 
 
 
 
3aeee04
 
 
 
 
 
0bbdad1
 
 
 
 
7fee3c1
0bbdad1
f3d6d17
0bbdad1
f3d6d17
 
0bbdad1
 
 
7b31889
 
 
0bbdad1
 
 
7b31889
 
 
 
 
0bbdad1
 
 
7b31889
0bbdad1
 
 
7b31889
 
0bbdad1
 
 
89dcecc
399d0d4
0bbdad1
 
 
399d0d4
0bbdad1
 
 
c8b6183
0bbdad1
 
 
 
399d0d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bbdad1
 
 
 
bea1a8e
 
 
0bbdad1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
language:
- ug
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- robust-speech-event
- ug
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: XLS-R-300M Uyghur CV8
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: ug
    metrics:
    - name: Test WER
      type: wer
      value: 30.5
    - name: Test CER
      type: cer
      value: 5.8
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# XLS-R-300M Uyghur CV8

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UG dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2026
- Wer: 0.3248

## Model description

For a description of the model architecture, see [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m)

The model vocabulary consists of the alphabetic characters of the [Perso-Arabic script for the Uyghur language](https://omniglot.com/writing/uyghur.htm), with punctuation removed.

## Intended uses & limitations

This model is expected to be of some utility for low-fidelity use cases such as:
- Draft video captions
- Indexing of recorded broadcasts

The model is not reliable enough to use as a substitute for live captions for accessibility purposes, and it should not be used in a manner that would infringe the privacy of any of the contributors to the Common Voice dataset nor any other speakers.

## Training and evaluation data

The combination of `train` and `dev` of common voice official splits were used as training data. The official `test` split was used as validation data as well as for final evaluation.

## Training procedure

The featurization layers of the XLS-R model are frozen while tuning a final CTC/LM layer on the Uyghur CV8 example sentences. A ramped learning rate is used with an initial warmup phase of 2000 steps, a max of 0.0001, and cooling back towards 0 for the remainder of the 9400 steps (100 epochs).

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 100.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.3036        | 5.32  | 500  | 3.2628          | 1.0    |
| 2.9734        | 10.63 | 1000 | 2.5677          | 0.9980 |
| 1.3466        | 15.95 | 1500 | 0.4455          | 0.6306 |
| 1.2424        | 21.28 | 2000 | 0.3603          | 0.5301 |
| 1.1655        | 26.59 | 2500 | 0.3165          | 0.4740 |
| 1.1026        | 31.91 | 3000 | 0.2930          | 0.4400 |
| 1.0655        | 37.23 | 3500 | 0.2675          | 0.4159 |
| 1.0239        | 42.55 | 4000 | 0.2580          | 0.3913 |
| 0.9938        | 47.87 | 4500 | 0.2373          | 0.3698 |
| 0.9655        | 53.19 | 5000 | 0.2379          | 0.3675 |
| 0.9374        | 58.51 | 5500 | 0.2486          | 0.3795 |
| 0.9065        | 63.83 | 6000 | 0.2243          | 0.3405 |
| 0.888         | 69.15 | 6500 | 0.2157          | 0.3277 |
| 0.8646        | 74.47 | 7000 | 0.2103          | 0.3288 |
| 0.8602        | 79.78 | 7500 | 0.2088          | 0.3238 |
| 0.8442        | 85.11 | 8000 | 0.2045          | 0.3266 |
| 0.8335        | 90.42 | 8500 | 0.2038          | 0.3241 |
| 0.8288        | 95.74 | 9000 | 0.2024          | 0.3280 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0