DQN Agent playing SpaceInvadersNoFrameskip-v4 ๐Ÿ‘พ

This is a trained DQN agent playing SpaceInvadersNoFrameskip-v4. This model was trained as part of the Hugging Face Deep RL Course Unit 3.

Training Details

  • Algorithm: Deep Q-Network (DQN)
  • Environment: SpaceInvadersNoFrameskip-v4 (Atari)
  • Library: Stable Baselines3
  • Training timesteps: 1,000,000
  • Evaluation: 340.50 +/- 45.20 (10 episodes)

Usage

from stable_baselines3 import DQN
from stable_baselines3.common.env_util import make_atari_env
from stable_baselines3.common.vec_env import VecFrameStack

# Create environment
env = make_atari_env('SpaceInvadersNoFrameskip-v4', n_envs=1)
env = VecFrameStack(env, n_stack=4)

# Load the model
model = DQN.load("dqn-SpaceInvadersNoFrameskip-v4", env=env)

# Enjoy trained agent
obs = env.reset()
for i in range(1000):
    action, _states = model.predict(obs, deterministic=True)
    obs, rewards, dones, info = env.step(action)
    env.render()

This model achieves good performance on the SpaceInvaders Atari game, scoring well above the target score of 200 for the Deep RL Course Unit 3.

Downloads last month
1
Video Preview
loading

Evaluation results

  • mean_reward on SpaceInvadersNoFrameskip-v4
    self-reported
    340.50 +/- 45.20