ner_based_ChineseModernBert_without_phone
This model is a fine-tuned version of TurboPascal/ChineseModernBert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0239
- Precision: 0.9365
- Recall: 0.9401
- F1: 0.9383
- Accuracy: 0.9960
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 163 | 0.0310 | 0.8354 | 0.8581 | 0.8466 | 0.9907 |
No log | 2.0 | 326 | 0.0202 | 0.8915 | 0.9244 | 0.9077 | 0.9942 |
No log | 3.0 | 489 | 0.0174 | 0.9211 | 0.9297 | 0.9254 | 0.9953 |
0.0784 | 4.0 | 652 | 0.0167 | 0.9226 | 0.9374 | 0.9300 | 0.9956 |
0.0784 | 5.0 | 815 | 0.0182 | 0.9305 | 0.9434 | 0.9369 | 0.9959 |
0.0784 | 6.0 | 978 | 0.0193 | 0.9329 | 0.9438 | 0.9383 | 0.9960 |
0.0046 | 7.0 | 1141 | 0.0220 | 0.9333 | 0.9430 | 0.9381 | 0.9960 |
0.0046 | 8.0 | 1304 | 0.0221 | 0.9328 | 0.9437 | 0.9382 | 0.9959 |
0.0046 | 9.0 | 1467 | 0.0235 | 0.9320 | 0.9452 | 0.9385 | 0.9960 |
0.0011 | 10.0 | 1630 | 0.0239 | 0.9365 | 0.9401 | 0.9383 | 0.9960 |
Framework versions
- Transformers 4.54.0
- Pytorch 2.7.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for luohuashijieyoufengjun/ner_based_ChineseModernBert_without_phone
Base model
TurboPascal/ChineseModernBert