ner_based_bert-base-chinese-only-phone1
This model is a fine-tuned version of google-bert/bert-base-chinese on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0202
- Precision: 0.9861
- Recall: 0.9861
- F1: 0.9861
- Accuracy: 0.9969
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 6 | 0.6782 | 0.3163 | 0.4306 | 0.3647 | 0.7385 |
No log | 2.0 | 12 | 0.2690 | 0.2840 | 0.3194 | 0.3007 | 0.9323 |
No log | 3.0 | 18 | 0.1381 | 0.3721 | 0.4444 | 0.4051 | 0.9417 |
No log | 4.0 | 24 | 0.0900 | 0.6216 | 0.6389 | 0.6301 | 0.9688 |
No log | 5.0 | 30 | 0.0588 | 0.9067 | 0.9444 | 0.9252 | 0.9896 |
No log | 6.0 | 36 | 0.0412 | 0.9189 | 0.9444 | 0.9315 | 0.9906 |
No log | 7.0 | 42 | 0.0298 | 0.9324 | 0.9583 | 0.9452 | 0.9917 |
No log | 8.0 | 48 | 0.0208 | 0.9589 | 0.9722 | 0.9655 | 0.9948 |
No log | 9.0 | 54 | 0.0223 | 0.9726 | 0.9861 | 0.9793 | 0.9958 |
No log | 10.0 | 60 | 0.0202 | 0.9861 | 0.9861 | 0.9861 | 0.9969 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for luohuashijieyoufengjun/ner_based_bert-base-chinese-only-phone1
Base model
google-bert/bert-base-chinese