ner_based_bert-base-chinese_badcase1
This model is a fine-tuned version of google-bert/bert-base-chinese on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0153
- Precision: 0.9528
- Recall: 0.9620
- F1: 0.9574
- Accuracy: 0.9967
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 6510
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1473 | 1.0 | 652 | 0.0276 | 0.8679 | 0.9207 | 0.8935 | 0.9919 |
0.0262 | 2.0 | 1304 | 0.0197 | 0.9051 | 0.9397 | 0.9221 | 0.9942 |
0.0203 | 3.0 | 1956 | 0.0208 | 0.9093 | 0.9381 | 0.9235 | 0.9941 |
0.0134 | 4.0 | 2608 | 0.0168 | 0.9193 | 0.9570 | 0.9378 | 0.9953 |
0.0118 | 5.0 | 3260 | 0.0153 | 0.9378 | 0.9559 | 0.9467 | 0.9960 |
0.0099 | 6.0 | 3912 | 0.0146 | 0.9420 | 0.9592 | 0.9505 | 0.9963 |
0.0073 | 7.0 | 4564 | 0.0159 | 0.9390 | 0.9621 | 0.9504 | 0.9962 |
0.0065 | 8.0 | 5216 | 0.0147 | 0.9449 | 0.9644 | 0.9546 | 0.9965 |
0.0056 | 9.0 | 5868 | 0.0145 | 0.9531 | 0.9607 | 0.9569 | 0.9967 |
0.0044 | 9.9847 | 6510 | 0.0153 | 0.9528 | 0.9620 | 0.9574 | 0.9967 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for luohuashijieyoufengjun/ner_based_bert-base-chinese_badcase1
Base model
google-bert/bert-base-chinese