m2nho's picture
End of training
33ef941 verified
|
raw
history blame
2.5 kB
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - Jzuluaga/atcosim_corpus
metrics:
  - wer
model-index:
  - name: Whisper small - Whisper with atcosim
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: >-
            This is a dataset constructed from two datasets: ATCO2-ASR and
            ATCOSIM.
          type: Jzuluaga/atcosim_corpus
          args: 'config: en, split: test small split [3000]'
        metrics:
          - name: Wer
            type: wer
            value: 8.947972793922798

Whisper small - Whisper with atcosim

This model is a fine-tuned version of openai/whisper-small on the This is a dataset constructed from two datasets: ATCO2-ASR and ATCOSIM. dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2504
  • Wer: 8.9480

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0569 0.5319 100 0.3078 11.7922
0.0307 1.0638 200 0.2728 10.8515
0.0253 1.5957 300 0.2762 10.7190
0.0066 2.1277 400 0.2551 9.0761
0.0061 2.6596 500 0.2526 9.5795
0.002 3.1915 600 0.2504 9.0010
0.0019 3.7234 700 0.2561 9.2880
0.0007 4.2553 800 0.2535 9.1026
0.001 4.7872 900 0.2495 8.9259
0.0003 5.3191 1000 0.2504 8.9480

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1