Piccolo-8x7b

In loving memory of my dog Klaus (Piccolo)

~ Piccolo (Italian): the little one ~

piccolo.png

Based on mlabonne/NeuralBeagle-7b Quants are available here

Code Example

Inference and Evaluation colab available here

from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_response(prompt):
    """
    Generate a response from the model based on the input prompt.
    Args:
    prompt (str): Prompt for the model.

    Returns:
    str: The generated response from the model.
    """
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)

    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return response

model_id = "macadeliccc/piccolo-8x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,load_in_4bit=True)

prompt = "What is the best way to train Cane Corsos?"

print("Response:")
print(generate_response(prompt), "\n")

The model is capable of quality code, math, and logical reasoning. Try whatever questions you think of.

Example output

example_output

Evaluations

image/png

https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__piccolo-8x7b

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 72.80
AI2 Reasoning Challenge (25-Shot) 69.62
HellaSwag (10-Shot) 86.98
MMLU (5-Shot) 64.13
TruthfulQA (0-shot) 64.17
Winogrande (5-shot) 79.87
GSM8k (5-shot) 72.02
Downloads last month
1,732
Safetensors
Model size
46.7B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for macadeliccc/piccolo-8x7b

Quantizations
3 models

Spaces using macadeliccc/piccolo-8x7b 13

Collection including macadeliccc/piccolo-8x7b

Evaluation results