|
|
--- |
|
|
library_name: transformers |
|
|
language: |
|
|
- nl |
|
|
license: mit |
|
|
base_model: microsoft/speecht5_tts |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
datasets: |
|
|
- maguette |
|
|
model-index: |
|
|
- name: SpeechT5 TTS MT V2 |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# SpeechT5 TTS MT V2 |
|
|
|
|
|
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the maguette dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.4931 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 1e-05 |
|
|
- train_batch_size: 16 |
|
|
- eval_batch_size: 8 |
|
|
- seed: 42 |
|
|
- gradient_accumulation_steps: 2 |
|
|
- total_train_batch_size: 32 |
|
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
|
- lr_scheduler_type: linear |
|
|
- lr_scheduler_warmup_steps: 10 |
|
|
- training_steps: 200 |
|
|
- mixed_precision_training: Native AMP |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|
|:-------------:|:--------:|:----:|:---------------:| |
|
|
| No log | 6.6667 | 10 | 1.1093 | |
|
|
| No log | 13.3333 | 20 | 0.9983 | |
|
|
| 1.1116 | 20.0 | 30 | 0.9168 | |
|
|
| 1.1116 | 26.6667 | 40 | 0.8119 | |
|
|
| 0.8005 | 33.3333 | 50 | 0.7925 | |
|
|
| 0.8005 | 40.0 | 60 | 0.7629 | |
|
|
| 0.8005 | 46.6667 | 70 | 0.7380 | |
|
|
| 0.738 | 53.3333 | 80 | 0.6968 | |
|
|
| 0.738 | 60.0 | 90 | 0.6487 | |
|
|
| 0.677 | 66.6667 | 100 | 0.6119 | |
|
|
| 0.677 | 73.3333 | 110 | 0.5832 | |
|
|
| 0.677 | 80.0 | 120 | 0.5555 | |
|
|
| 0.5968 | 86.6667 | 130 | 0.5425 | |
|
|
| 0.5968 | 93.3333 | 140 | 0.5329 | |
|
|
| 0.5626 | 100.0 | 150 | 0.5180 | |
|
|
| 0.5626 | 106.6667 | 160 | 0.5074 | |
|
|
| 0.5626 | 113.3333 | 170 | 0.5100 | |
|
|
| 0.5461 | 120.0 | 180 | 0.5035 | |
|
|
| 0.5461 | 126.6667 | 190 | 0.4918 | |
|
|
| 0.5208 | 133.3333 | 200 | 0.4931 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.46.3 |
|
|
- Pytorch 2.6.0+cu124 |
|
|
- Datasets 3.1.0 |
|
|
- Tokenizers 0.20.3 |
|
|
|