whisper-base-khmer / README.md
manuth's picture
End of training
aaeb720 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: whisper-base-khmer
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: fleurs
          config: km_kh
          split: test
          args: km_kh
        metrics:
          - name: Wer
            type: wer
            value: 0.9567538446468802

whisper-base-khmer

This model is a fine-tuned version of openai/whisper-base on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6861
  • Wer: 0.9568

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1913 1.0 158 1.1945 1.0348
0.8548 2.0 316 0.8276 0.9761
0.6434 3.0 474 0.6861 0.9568

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0