whisper-large-khmer / README.md
manuth's picture
End of training
0d5aa9b verified
metadata
library_name: transformers
language:
  - khm
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - khmer-coupus
metrics:
  - wer
model-index:
  - name: Whisper Large V3 Turbo Khmer
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: khmer-coupus
          config: km_kh
          split: test
          args: 'config: khm, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 101.09561752988047

Whisper Large V3 Turbo Khmer

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6277
  • Wer: 101.0956

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3899 15.8835 1000 0.6277 101.0956
0.0522 31.7550 2000 0.7151 102.6394
0.0051 47.6265 3000 1.0525 104.0090
0.0023 63.4980 4000 1.1451 104.5319

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0