Whisper Small German SBB all SNR - v6

This model is a fine-tuned version of openai/whisper-small on the SBB Dataset 05.01.2023 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0426
  • Wer: 0.0266

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 400
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.7233 0.04 100 0.4161 0.2232
0.1932 0.09 200 0.0665 0.0361
0.0615 0.13 300 0.0666 0.0361
0.0677 0.18 400 0.0426 0.0266

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1
  • Datasets 2.8.0
  • Tokenizers 0.12.1
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Evaluation results