Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases

distilbert-base-multilingual-cased-2-contract-sections-classification-v2

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3290
  • Accuracy: 0.964

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0275 1.0 1000 0.1685 0.964
0.0281 2.0 2000 0.1838 0.9625
0.0262 3.0 3000 0.1768 0.9675
0.025 4.0 4000 0.1766 0.9643
0.0229 5.0 5000 0.2149 0.958
0.0125 6.0 6000 0.2050 0.9593
0.0157 7.0 7000 0.2108 0.9593
0.0168 8.0 8000 0.2029 0.9625
0.0118 9.0 9000 0.2118 0.9617
0.011 10.0 10000 0.2319 0.9593
0.0103 11.0 11000 0.2175 0.9615
0.0097 12.0 12000 0.2288 0.9625
0.0114 13.0 13000 0.2267 0.9617
0.0064 14.0 14000 0.2401 0.9605
0.0055 15.0 15000 0.2361 0.9607
0.0042 16.0 16000 0.2279 0.9633
0.005 17.0 17000 0.2537 0.96
0.0033 18.0 18000 0.2518 0.9613
0.0052 19.0 19000 0.2680 0.9583
0.0034 20.0 20000 0.2836 0.959
0.0027 21.0 21000 0.2599 0.961
0.0025 22.0 22000 0.2695 0.9587
0.0018 23.0 23000 0.2758 0.959
0.0029 24.0 24000 0.2826 0.9597
0.0032 25.0 25000 0.2645 0.9617
0.002 26.0 26000 0.2856 0.9597
0.0033 27.0 27000 0.2750 0.9595
0.0031 28.0 28000 0.2653 0.9607
0.0021 29.0 29000 0.2687 0.9623
0.004 30.0 30000 0.2878 0.9613
0.0027 31.0 31000 0.2778 0.9625
0.004 32.0 32000 0.2672 0.965
0.005 33.0 33000 0.2771 0.9647
0.0024 34.0 34000 0.2746 0.9663
0.0022 35.0 35000 0.3088 0.9595
0.0001 36.0 36000 0.2909 0.9615
0.0016 37.0 37000 0.2744 0.9645
0.0025 38.0 38000 0.3005 0.9607
0.0006 39.0 39000 0.3034 0.9607
0.0021 40.0 40000 0.3198 0.9607
0.0002 41.0 41000 0.3039 0.9607
0.0005 42.0 42000 0.3338 0.9585
0.001 43.0 43000 0.3179 0.96
0.0016 44.0 44000 0.2949 0.9633
0.0022 45.0 45000 0.3167 0.9597
0.0008 46.0 46000 0.3077 0.9605
0.0028 47.0 47000 0.3055 0.9615
0.0025 48.0 48000 0.2892 0.9643
0.0018 49.0 49000 0.3142 0.9597
0.0013 50.0 50000 0.3204 0.9617
0.003 51.0 51000 0.3505 0.9597
0.0003 52.0 52000 0.3168 0.963
0.0026 53.0 53000 0.3503 0.959
0.0019 54.0 54000 0.3374 0.9633
0.0006 55.0 55000 0.3449 0.96
0.0001 56.0 56000 0.3348 0.9627
0.0027 57.0 57000 0.3310 0.9613
0.0021 58.0 58000 0.3310 0.961
0.0005 59.0 59000 0.3136 0.963
0.0006 60.0 60000 0.3118 0.9637
0.0006 61.0 61000 0.3133 0.9613
0.0013 62.0 62000 0.3058 0.9643
0.0 63.0 63000 0.3053 0.964
0.0008 64.0 64000 0.3016 0.965
0.0008 65.0 65000 0.3109 0.9655
0.0011 66.0 66000 0.3061 0.9647
0.0 67.0 67000 0.3009 0.9665
0.0009 68.0 68000 0.3140 0.9643
0.0006 69.0 69000 0.3105 0.965
0.0007 70.0 70000 0.3120 0.9655
0.0 71.0 71000 0.3334 0.962
0.0018 72.0 72000 0.3361 0.9617
0.0011 73.0 73000 0.3240 0.963
0.0006 74.0 74000 0.3196 0.9637
0.002 75.0 75000 0.3077 0.966
0.0017 76.0 76000 0.3153 0.9633
0.001 77.0 77000 0.3217 0.963
0.001 78.0 78000 0.3192 0.965
0.0 79.0 79000 0.3188 0.9657
0.001 80.0 80000 0.3278 0.9627
0.0016 81.0 81000 0.3189 0.9625
0.0017 82.0 82000 0.3237 0.9625
0.001 83.0 83000 0.3195 0.9635
0.0014 84.0 84000 0.3301 0.9625
0.0 85.0 85000 0.3235 0.9635
0.0017 86.0 86000 0.3313 0.9627
0.0005 87.0 87000 0.3300 0.9625
0.0 88.0 88000 0.3241 0.964
0.0005 89.0 89000 0.3260 0.9637
0.0016 90.0 90000 0.3296 0.9643
0.0006 91.0 91000 0.3302 0.9637
0.0 92.0 92000 0.3283 0.964
0.0016 93.0 93000 0.3250 0.965
0.0007 94.0 94000 0.3260 0.9647
0.0006 95.0 95000 0.3294 0.9637
0.0009 96.0 96000 0.3278 0.9645
0.0016 97.0 97000 0.3277 0.9645
0.0006 98.0 98000 0.3287 0.964
0.0 99.0 99000 0.3290 0.964
0.0005 100.0 100000 0.3290 0.964

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
135M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support