xlm-roberta-base-2-contract-sections-classification-v4-10
This model is a fine-tuned version of FacebookAI/xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2496
- Accuracy Evaluate: 0.939
- Precision Evaluate: 0.9389
- Recall Evaluate: 0.9535
- F1 Evaluate: 0.9432
- Accuracy Sklearn: 0.939
- Precision Sklearn: 0.9456
- Recall Sklearn: 0.939
- F1 Sklearn: 0.9398
- Acuracia Rotulo Objeto: 0.9814
- Acuracia Rotulo Obrigacoes: 0.7929
- Acuracia Rotulo Valor: 0.9484
- Acuracia Rotulo Vigencia: 0.9790
- Acuracia Rotulo Rescisao: 0.9501
- Acuracia Rotulo Foro: 0.9385
- Acuracia Rotulo Reajuste: 0.9680
- Acuracia Rotulo Fiscalizacao: 0.9243
- Acuracia Rotulo Publicacao: 1.0
- Acuracia Rotulo Pagamento: 0.9819
- Acuracia Rotulo Casos Omissos: 0.9360
- Acuracia Rotulo Sancoes: 1.0
- Acuracia Rotulo Dotacao Orcamentaria: 0.9945
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy Evaluate | Precision Evaluate | Recall Evaluate | F1 Evaluate | Accuracy Sklearn | Precision Sklearn | Recall Sklearn | F1 Sklearn | Acuracia Rotulo Objeto | Acuracia Rotulo Obrigacoes | Acuracia Rotulo Valor | Acuracia Rotulo Vigencia | Acuracia Rotulo Rescisao | Acuracia Rotulo Foro | Acuracia Rotulo Reajuste | Acuracia Rotulo Fiscalizacao | Acuracia Rotulo Publicacao | Acuracia Rotulo Pagamento | Acuracia Rotulo Casos Omissos | Acuracia Rotulo Sancoes | Acuracia Rotulo Dotacao Orcamentaria |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.8607 | 1.0 | 1000 | 1.4840 | 0.7468 | 0.8061 | 0.7434 | 0.7394 | 0.7468 | 0.7930 | 0.7468 | 0.7408 | 0.9628 | 0.7694 | 0.4699 | 0.5354 | 0.7618 | 0.9231 | 0.8754 | 0.7066 | 0.8424 | 0.8261 | 0.8571 | 0.9358 | 0.1978 |
0.9297 | 2.0 | 2000 | 0.6945 | 0.8858 | 0.9003 | 0.9002 | 0.8962 | 0.8858 | 0.8941 | 0.8858 | 0.8851 | 0.9587 | 0.7542 | 0.6762 | 0.9370 | 0.9418 | 0.9231 | 0.9609 | 0.9211 | 0.9261 | 0.9058 | 0.8768 | 0.9541 | 0.9670 |
0.5383 | 3.0 | 3000 | 0.3917 | 0.9225 | 0.9292 | 0.9356 | 0.9301 | 0.9225 | 0.9284 | 0.9225 | 0.9228 | 0.9711 | 0.7795 | 0.8625 | 0.9816 | 0.9612 | 0.9385 | 0.9715 | 0.9274 | 0.9951 | 0.9275 | 0.8966 | 0.9725 | 0.9780 |
0.343 | 4.0 | 4000 | 0.3102 | 0.9307 | 0.9375 | 0.9448 | 0.9389 | 0.9307 | 0.9370 | 0.9307 | 0.9311 | 0.9793 | 0.7744 | 0.9112 | 0.9764 | 0.9584 | 0.9385 | 0.9609 | 0.9306 | 0.9951 | 0.9819 | 0.9163 | 0.9817 | 0.9780 |
0.228 | 5.0 | 5000 | 0.2754 | 0.9333 | 0.9354 | 0.9472 | 0.9383 | 0.9333 | 0.9403 | 0.9333 | 0.9340 | 0.9793 | 0.7795 | 0.9484 | 0.9790 | 0.9612 | 0.9385 | 0.9680 | 0.9243 | 1.0 | 0.9312 | 0.9360 | 0.9908 | 0.9780 |
0.1585 | 6.0 | 6000 | 0.2710 | 0.9353 | 0.9361 | 0.9504 | 0.9400 | 0.9353 | 0.9428 | 0.9353 | 0.9360 | 0.9793 | 0.7778 | 0.9427 | 0.9790 | 0.9529 | 0.9385 | 0.9715 | 0.9306 | 1.0 | 0.9638 | 0.9360 | 1.0 | 0.9835 |
0.1407 | 7.0 | 7000 | 0.2619 | 0.9363 | 0.9375 | 0.9508 | 0.9411 | 0.9363 | 0.9432 | 0.9363 | 0.9370 | 0.9814 | 0.7828 | 0.9484 | 0.9790 | 0.9557 | 0.9385 | 0.9680 | 0.9274 | 1.0 | 0.9601 | 0.9360 | 1.0 | 0.9835 |
0.1155 | 8.0 | 8000 | 0.2612 | 0.937 | 0.9372 | 0.9524 | 0.9414 | 0.937 | 0.9447 | 0.937 | 0.9379 | 0.9814 | 0.7811 | 0.9484 | 0.9816 | 0.9418 | 0.9385 | 0.9680 | 0.9274 | 1.0 | 0.9819 | 0.9360 | 1.0 | 0.9945 |
0.1055 | 9.0 | 9000 | 0.2563 | 0.9385 | 0.9388 | 0.9533 | 0.9429 | 0.9385 | 0.9456 | 0.9385 | 0.9393 | 0.9814 | 0.7879 | 0.9513 | 0.9790 | 0.9474 | 0.9385 | 0.9680 | 0.9274 | 1.0 | 0.9819 | 0.9360 | 1.0 | 0.9945 |
0.1025 | 10.0 | 10000 | 0.2496 | 0.939 | 0.9389 | 0.9535 | 0.9432 | 0.939 | 0.9456 | 0.939 | 0.9398 | 0.9814 | 0.7929 | 0.9484 | 0.9790 | 0.9501 | 0.9385 | 0.9680 | 0.9243 | 1.0 | 0.9819 | 0.9360 | 1.0 | 0.9945 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.3.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Model tree for marcelovidigal/xlm-roberta-base-2-contract-sections-classification-v4-10
Base model
FacebookAI/xlm-roberta-base