Description
scVI model trained on the full DLPFC Visium data (including the pilot samples).
Model properties
Many model properties are in the model tags. Some more are listed below.
model_init_params:
{
"n_hidden": 128,
"n_latent": 5,
"n_layers": 1,
"dropout_rate": 0.1,
"dispersion": "gene",
"gene_likelihood": "zinb",
"latent_distribution": "normal"
}
model_setup_anndata_args:
{
"layer": "counts",
"batch_key": "patient",
"labels_key": null,
"size_factor_key": null,
"categorical_covariate_keys": [
"sample",
"study"
],
"continuous_covariate_keys": null
}
model_summary_stats:
Summary Stat Key | Value |
---|---|
n_batch | 13 |
n_cells | 166443 |
n_extra_categorical_covs | 2 |
n_extra_continuous_covs | 0 |
n_labels | 1 |
n_vars | 5000 |
model_data_registry:
Registry Key | scvi-tools Location |
---|---|
X | adata.layers['counts'] |
batch | adata.obs['_scvi_batch'] |
extra_categorical_covs | adata.obsm['_scvi_extra_categorical_covs'] |
labels | adata.obs['_scvi_labels'] |
model_parent_module: scvi.model
data_is_minified: False
Training data
This is an optional link to where the training data is stored if it is too large to host on the huggingface Model hub.
Training data url: N/A
Training code
This is an optional link to the code used to train the model.
Training code url: N/A
References
- Maynard, Kristen R., et al. "Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex." Nature neuroscience 24.3 (2021): 425-436.
- Huuki-Myers, Louise A., et al. "Integrated single cell and unsupervised spatial transcriptomic analysis defines molecular anatomy of the human dorsolateral prefrontal cortex." BioRxiv (2023): 2023-02.