Edit model card

V0.3 IS UP

Link to V0.3

Synatra-V0.1-7B

Made by StableFluffy

Visit my website! - Currently on consturction..

License

This model is strictly non-commercial (cc-by-nc-4.0) use only which takes priority over the LLAMA 2 COMMUNITY LICENSE AGREEMENT. The "Model" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included cc-by-nc-4.0 license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences. The licence can be changed after new model released.

Model Details

Base Model
mistralai/Mistral-7B-Instruct-v0.1

Trained On
A6000 48GB * 8

Instruction format

ν•™μŠ΅ κ³Όμ •μ˜ μ‹€μˆ˜λ‘œ [/INST]κ°€ μ•„λ‹Œ [\INST]κ°€ μ μš©λ˜μ—ˆμŠ΅λ‹ˆλ‹€. v0.2 μ—μ„œ μˆ˜μ • 될 μ˜ˆμ •μž…λ‹ˆλ‹€.

In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST] and [\INST] tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. Plus, It is strongly recommended to add a space at the end of the prompt.

E.g.

text = "<s>[INST] μ•„μ΄μž‘ λ‰΄ν„΄μ˜ 업적을 μ•Œλ €μ€˜. [\INST] "

Model Benchmark

KULLM Evaluation

ꡬ름v2 repo μ—μ„œ μ œκ³΅λ˜λŠ” 데이터셋과 ν”„λ‘¬ν”„νŠΈλ₯Ό μ‚¬μš©ν•˜μ—¬ ν‰κ°€ν–ˆμŠ΅λ‹ˆλ‹€. λ‹Ήμ‹œ GPT4와 ν˜„μž¬ GPT4κ°€ μ™„μ „νžˆ λ™μΌν•˜μ§€λŠ” μ•ŠκΈ°μ— μ‹€μ œ 결과와 μ•½κ°„μ˜ 차이가 쑴재 ν•  수 μžˆμŠ΅λ‹ˆλ‹€.

img

Model 이해가λŠ₯μ„± μžμ—°μŠ€λŸ¬μ›€ λ§₯λ½μœ μ§€ ν₯λ―Έλ‘œμ›€ μ§€μ‹œμ–΄μ‚¬μš© μ „λ°˜μ ν€„λ¦¬ν‹°
GPT-3.5 0.980 2.806 2.849 2.056 0.917 3.905
GPT-4 0.984 2.897 2.944 2.143 0.968 4.083
KoAlpaca v1.1 0.651 1.909 1.901 1.583 0.385 2.575
koVicuna 0.460 1.583 1.726 1.528 0.409 2.440
KULLM v2 0.742 2.083 2.107 1.794 0.548 3.036
Synatra-V0.1-7B 0.960 2.821 2.755 2.356 0.934 4.065

KOBEST_BOOLQ, SENTINEG, WIC - ZERO_SHOT

EleutherAI/lm-evaluation-harnessλ₯Ό μ‚¬μš©ν•˜μ—¬ BoolQ, SentiNeg, Wic을 μΈ‘μ •ν–ˆμŠ΅λ‹ˆλ‹€.

HellaSwag와 COPAλŠ” μ›λ³Έμ½”λ“œλ₯Ό μˆ˜μ •ν•˜λŠ” κ³Όμ •μ—μ„œ 어렀움을 κ²ͺμ–΄ 아직 μ§„ν–‰ν•˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€.

NOTE

BoolQμ—λŠ” Instruction λͺ¨λΈμ˜ 이해λ₯Ό λ•κΈ°μœ„ν•΄ "μœ„ 글에 λŒ€ν•œ μ§ˆλ¬Έμ— 사싀을 ν™•μΈν•˜λŠ” μž‘μ—…μž…λ‹ˆλ‹€.", "예, μ•„λ‹ˆμ˜€λ‘œ λŒ€λ‹΅ν•΄μ£Όμ„Έμš”."의 ν”„λ‘¬ν”„νŠΈλ₯Ό μΆ”κ°€ν–ˆμŠ΅λ‹ˆλ‹€. SentiNegμ—λŠ” Instruction λͺ¨λΈμ˜ 이해λ₯Ό λ•κΈ°μœ„ν•΄ "μœ„ λ¬Έμž₯의 긍정, λΆ€μ • μ—¬λΆ€λ₯Ό νŒλ‹¨ν•˜μ„Έμš”."의 ν”„λ‘¬ν”„νŠΈλ₯Ό μΆ”κ°€ν–ˆμŠ΅λ‹ˆλ‹€. Wic의 κ²½μš°λŠ” [INST], [\INST]만 μΆ”κ°€ν•˜μ˜€μŠ΅λ‹ˆλ‹€.

Model COPA HellaSwag BoolQ SentiNeg Wic
EleutherAI/polyglot-ko-12.8b 0.7937 0.5954 0.4818 0.9117 0.3985
Synatra-V0.1-7B NaN NaN 0.849 0.8690 0.4881

Implementation Code

Since, chat_template already contains insturction format above. You can use the code below.

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-V0.1-7B")
tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-V0.1-7B")

messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

If you run it on oobabooga your prompt would look like this. - ** Need to add Space at the end! **

[INST] 링컨에 λŒ€ν•΄μ„œ μ•Œλ €μ€˜. [\INST] 

Readme format: beomi/llama-2-ko-7b


Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 53.54
ARC (25-shot) 55.29
HellaSwag (10-shot) 76.63
MMLU (5-shot) 55.29
TruthfulQA (0-shot) 55.76
Winogrande (5-shot) 72.77
GSM8K (5-shot) 19.41
DROP (3-shot) 39.63
Downloads last month
4,547
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for maywell/Synatra-V0.1-7B-Instruct

Quantizations
3 models

Spaces using maywell/Synatra-V0.1-7B-Instruct 5