See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: The-matt/llama2_ko-7b_distinctive-snowflake-182_1060
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 5f010475c09e86bf_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_input: input
field_instruction: instruct
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 400
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: mbort1/cefc3b25-e1fd-45f8-b2c0-5de840082cab
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
local_rank: null
logging_steps: 50
lora_alpha: 16
lora_dropout: 0.1
lora_fan_in_fan_out: false
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /ephemeral/tmp/5f010475c09e86bf_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
save_steps: 400
saves_per_epoch: null
seed: 25145
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: af5073a6-190f-4d48-aa36-199d16b3802c
wandb_project: mbort1
wandb_run: your_name
wandb_runid: af5073a6-190f-4d48-aa36-199d16b3802c
warmup_steps: 100
weight_decay: 0.01
xformers_attention: false
cefc3b25-e1fd-45f8-b2c0-5de840082cab
This model is a fine-tuned version of The-matt/llama2_ko-7b_distinctive-snowflake-182_1060 on the None dataset. It achieves the following results on the evaluation set:
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 25145
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 400
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0005 | 1 | nan |
0.0 | 0.2160 | 400 | nan |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support