Object Detection
Transformers
Safetensors
yolos

YOLOS (tiny-sized) Model For Handwritten Signature Detection

YOLOS model fine-tuned to detect handwritten signatures in document images using tech4humans/signature-detection dataset.

Original YOLOS was introduced in the paper You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection by Fang et al. and first released in this repository.

Model description

YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).

The model is trained using a "bipartite matching loss": one compares the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The Hungarian matching algorithm is used to create an optimal one-to-one mapping between each of the N queries and each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and generalized IoU loss (for the bounding boxes) are used to optimize the parameters of the model.

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

Here is how to use this model:

from transformers import YolosImageProcessor, YolosForObjectDetection
from PIL import Image
import torch
import requests

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

model = YolosForObjectDetection.from_pretrained('mdefrance/yolos-tiny-signature-detection')
image_processor = YolosImageProcessor.from_pretrained("mdefrance/yolos-tiny-signature-detection")

inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)

# model predicts bounding boxes and corresponding COCO classes
logits = outputs.logits
bboxes = outputs.pred_boxes


# print results
target_sizes = torch.tensor([image.size[::-1]])
results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0]
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
    box = [round(i, 2) for i in box.tolist()]
    print(
        f"Detected Signature with confidence "
        f"{round(score.item(), 3)} at location {box}"
    )

Currently, both the feature extractor and model support PyTorch.

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

Dataset on HF

The training utilized a dataset built from two public datasets: Tobacco800 and signatures-xc8up, unified and processed in Roboflow.

Dataset Summary:

  • Training: 1,980 images (70%)
  • Validation: 420 images (15%)
  • Testing: 419 images (15%)
  • Format: COCO JSON
  • Resolution: 640x640 pixels

Roboflow Dataset

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
348
Safetensors
Model size
6.47M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for mdefrance/yolos-tiny-signature-detection

Base model

hustvl/yolos-tiny
Finetuned
(54)
this model

Dataset used to train mdefrance/yolos-tiny-signature-detection