windowz_ln_segment_051525

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.9734
  • F1: 0.9770
  • Iou: 0.9606
  • Per Class Metrics: {0: {'f1': 0.99208, 'iou': 0.98429, 'accuracy': 0.98821}, 1: {'f1': 0.95742, 'iou': 0.91831, 'accuracy': 0.97945}, 2: {'f1': 0.27975, 'iou': 0.16263, 'accuracy': 0.97907}}
  • Loss: 0.5105

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 1

Training results

Training Loss Epoch Step Class Metrics Validation Loss
No log 0.0503 86 0.1155 {0: {'f1': 1e-05, 'iou': 0.0, 'accuracy': 0.25189}, 1: {'f1': 0.64518, 'iou': 0.47621, 'accuracy': 0.86451}, 2: {'f1': 0.00676, 'iou': 0.00339, 'accuracy': 0.13587}} 1.0017
1.2378 0.1006 172 0.0635 {0: {'f1': 2e-05, 'iou': 1e-05, 'accuracy': 0.25181}, 1: {'f1': 0.41464, 'iou': 0.26154, 'accuracy': 0.81337}, 2: {'f1': 0.01135, 'iou': 0.00571, 'accuracy': 0.07762}} 0.9440
1.2207 0.1510 258 0.0554 {0: {'f1': 0.0, 'iou': 0.0, 'accuracy': 0.25189}, 1: {'f1': 0.37135, 'iou': 0.22801, 'accuracy': 0.80693}, 2: {'f1': 0.01383, 'iou': 0.00696, 'accuracy': 0.0683}} 0.9237
1.1925 0.2013 344 0.0499 {0: {'f1': 0.0, 'iou': 0.0, 'accuracy': 0.2519}, 1: {'f1': 0.34062, 'iou': 0.20527, 'accuracy': 0.80395}, 2: {'f1': 0.0169, 'iou': 0.00852, 'accuracy': 0.06157}} 0.9326
1.1606 0.2516 430 0.0647 {0: {'f1': 0.0, 'iou': 0.0, 'accuracy': 0.2519}, 1: {'f1': 0.42092, 'iou': 0.26656, 'accuracy': 0.81803}, 2: {'f1': 0.01824, 'iou': 0.0092, 'accuracy': 0.07944}} 0.9245
1.1299 0.3019 516 0.1179 {0: {'f1': 0.00055, 'iou': 0.00027, 'accuracy': 0.2521}, 1: {'f1': 0.65335, 'iou': 0.48517, 'accuracy': 0.87296}, 2: {'f1': 0.01684, 'iou': 0.00849, 'accuracy': 0.12971}} 0.8751
1.0998 0.3523 602 0.1795 {0: {'f1': 0.09312, 'iou': 0.04883, 'accuracy': 0.28836}, 1: {'f1': 0.74168, 'iou': 0.58942, 'accuracy': 0.89807}, 2: {'f1': 0.01625, 'iou': 0.00819, 'accuracy': 0.19265}} 0.8243
1.0998 0.4026 688 0.8495 {0: {'f1': 0.98464, 'iou': 0.96975, 'accuracy': 0.97734}, 1: {'f1': 0.67506, 'iou': 0.5095, 'accuracy': 0.879}, 2: {'f1': 0.10072, 'iou': 0.05303, 'accuracy': 0.86349}} 0.8043
1.0696 0.4529 774 0.874 {0: {'f1': 0.98422, 'iou': 0.96893, 'accuracy': 0.97671}, 1: {'f1': 0.75979, 'iou': 0.61262, 'accuracy': 0.90403}, 2: {'f1': 0.11786, 'iou': 0.06262, 'accuracy': 0.88981}} 0.7506
1.0419 0.5032 860 0.9391 {0: {'f1': 0.98895, 'iou': 0.97813, 'accuracy': 0.98362}, 1: {'f1': 0.9206, 'iou': 0.85288, 'accuracy': 0.96291}, 2: {'f1': 0.10984, 'iou': 0.05811, 'accuracy': 0.9543}} 0.6618
1.0149 0.5535 946 0.7046 {0: {'f1': 0.91333, 'iou': 0.84049, 'accuracy': 0.85914}, 1: {'f1': 0.47479, 'iou': 0.3113, 'accuracy': 0.83125}, 2: {'f1': 0.06969, 'iou': 0.0361, 'accuracy': 0.95034}} 0.7884
1.0024 0.6039 1032 0.8763 {0: {'f1': 0.97412, 'iou': 0.94954, 'accuracy': 0.96061}, 1: {'f1': 0.81027, 'iou': 0.68105, 'accuracy': 0.92142}, 2: {'f1': 0.15071, 'iou': 0.0815, 'accuracy': 0.94565}} 0.5940
0.9739 0.6542 1118 0.2909 {0: {'f1': 0.24044, 'iou': 0.13665, 'accuracy': 0.34611}, 1: {'f1': 0.87511, 'iou': 0.77796, 'accuracy': 0.94508}, 2: {'f1': 0.01577, 'iou': 0.00795, 'accuracy': 0.31169}} 0.9626
0.9626 0.7045 1204 0.9520 {0: {'f1': 0.99067, 'iou': 0.98152, 'accuracy': 0.98615}, 1: {'f1': 0.94406, 'iou': 0.89405, 'accuracy': 0.97333}, 2: {'f1': 0.17721, 'iou': 0.09722, 'accuracy': 0.96864}} 0.5658
0.9626 0.7548 1290 0.9183 {0: {'f1': 0.98633, 'iou': 0.97303, 'accuracy': 0.97941}, 1: {'f1': 0.87697, 'iou': 0.78089, 'accuracy': 0.94587}, 2: {'f1': 0.18891, 'iou': 0.1043, 'accuracy': 0.95606}} 0.6192
0.9515 0.8051 1376 0.3322 {0: {'f1': 0.25117, 'iou': 0.14362, 'accuracy': 0.35705}, 1: {'f1': 0.96192, 'iou': 0.92663, 'accuracy': 0.98155}, 2: {'f1': 0.00532, 'iou': 0.00267, 'accuracy': 0.34648}} 0.9133
0.9395 0.8555 1462 0.9488 {0: {'f1': 0.99219, 'iou': 0.98451, 'accuracy': 0.98835}, 1: {'f1': 0.93039, 'iou': 0.86984, 'accuracy': 0.96766}, 2: {'f1': 0.25682, 'iou': 0.14733, 'accuracy': 0.96767}} 0.5446
0.9288 0.9058 1548 0.9606 {0: {'f1': 0.99208, 'iou': 0.98429, 'accuracy': 0.98821}, 1: {'f1': 0.95742, 'iou': 0.91831, 'accuracy': 0.97945}, 2: {'f1': 0.27975, 'iou': 0.16263, 'accuracy': 0.97907}} 0.5105
0.9341 0.9561 1634 0.9536 {0: {'f1': 0.98841, 'iou': 0.97708, 'accuracy': 0.98281}, 1: {'f1': 0.95511, 'iou': 0.91408, 'accuracy': 0.97815}, 2: {'f1': 0.18082, 'iou': 0.0994, 'accuracy': 0.97498}} 0.5982

Framework versions

  • Transformers 4.45.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.6.0
  • Tokenizers 0.20.3
Downloads last month
9
Safetensors
Model size
544k params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support