meandyou200175 commited on
Commit
f5ba522
·
verified ·
1 Parent(s): 90f9ad5

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,555 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:9316
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: intfloat/multilingual-e5-large
10
+ widget:
11
+ - source_sentence: Horn band legwearis a type oflegwear, oftenthighhighs, with ahornedcharacter
12
+ design along the upper band.
13
+ sentences:
14
+ - horn band legwear
15
+ - head out of frame
16
+ - sweatpants
17
+ - source_sentence: When a character is looping the laces of theiruntied shoelacesinto
18
+ a sturdy bow.
19
+ sentences:
20
+ - hair tie
21
+ - tying footwear
22
+ - loose necktie
23
+ - source_sentence: Use this tag if the person's eyewear isremovedfrom their usual
24
+ place and carried in the hands. If it still rests on the bridge of the nose or
25
+ head, seeadjusting eyewearand its related tags.
26
+ sentences:
27
+ - cow costume
28
+ - sarong
29
+ - holding removed eyewear
30
+ - source_sentence: When both of a character's hands are on another character'sthighs.
31
+ sentences:
32
+ - baking
33
+ - triplets
34
+ - hands on another's thighs
35
+ - source_sentence: A long appendage protruding from the lower back. Often covered
36
+ in fur or scales. A common feature of animal girls.
37
+ sentences:
38
+ - tail
39
+ - grey-framed eyewear
40
+ - stomach day
41
+ datasets:
42
+ - meandyou200175/word_embedding
43
+ pipeline_tag: sentence-similarity
44
+ library_name: sentence-transformers
45
+ metrics:
46
+ - cosine_accuracy@1
47
+ - cosine_accuracy@2
48
+ - cosine_accuracy@5
49
+ - cosine_accuracy@10
50
+ - cosine_accuracy@100
51
+ - cosine_precision@1
52
+ - cosine_precision@2
53
+ - cosine_precision@5
54
+ - cosine_precision@10
55
+ - cosine_precision@100
56
+ - cosine_recall@1
57
+ - cosine_recall@2
58
+ - cosine_recall@5
59
+ - cosine_recall@10
60
+ - cosine_recall@100
61
+ - cosine_ndcg@10
62
+ - cosine_mrr@1
63
+ - cosine_mrr@2
64
+ - cosine_mrr@5
65
+ - cosine_mrr@10
66
+ - cosine_mrr@100
67
+ - cosine_map@100
68
+ model-index:
69
+ - name: SentenceTransformer based on intfloat/multilingual-e5-large
70
+ results:
71
+ - task:
72
+ type: information-retrieval
73
+ name: Information Retrieval
74
+ dataset:
75
+ name: Unknown
76
+ type: unknown
77
+ metrics:
78
+ - type: cosine_accuracy@1
79
+ value: 0.8108108108108109
80
+ name: Cosine Accuracy@1
81
+ - type: cosine_accuracy@2
82
+ value: 0.8957528957528957
83
+ name: Cosine Accuracy@2
84
+ - type: cosine_accuracy@5
85
+ value: 0.9382239382239382
86
+ name: Cosine Accuracy@5
87
+ - type: cosine_accuracy@10
88
+ value: 0.9642857142857143
89
+ name: Cosine Accuracy@10
90
+ - type: cosine_accuracy@100
91
+ value: 0.9932432432432432
92
+ name: Cosine Accuracy@100
93
+ - type: cosine_precision@1
94
+ value: 0.8108108108108109
95
+ name: Cosine Precision@1
96
+ - type: cosine_precision@2
97
+ value: 0.44787644787644787
98
+ name: Cosine Precision@2
99
+ - type: cosine_precision@5
100
+ value: 0.18764478764478765
101
+ name: Cosine Precision@5
102
+ - type: cosine_precision@10
103
+ value: 0.09642857142857143
104
+ name: Cosine Precision@10
105
+ - type: cosine_precision@100
106
+ value: 0.009932432432432433
107
+ name: Cosine Precision@100
108
+ - type: cosine_recall@1
109
+ value: 0.8108108108108109
110
+ name: Cosine Recall@1
111
+ - type: cosine_recall@2
112
+ value: 0.8957528957528957
113
+ name: Cosine Recall@2
114
+ - type: cosine_recall@5
115
+ value: 0.9382239382239382
116
+ name: Cosine Recall@5
117
+ - type: cosine_recall@10
118
+ value: 0.9642857142857143
119
+ name: Cosine Recall@10
120
+ - type: cosine_recall@100
121
+ value: 0.9932432432432432
122
+ name: Cosine Recall@100
123
+ - type: cosine_ndcg@10
124
+ value: 0.8923095558988695
125
+ name: Cosine Ndcg@10
126
+ - type: cosine_mrr@1
127
+ value: 0.8108108108108109
128
+ name: Cosine Mrr@1
129
+ - type: cosine_mrr@2
130
+ value: 0.8532818532818532
131
+ name: Cosine Mrr@2
132
+ - type: cosine_mrr@5
133
+ value: 0.8649292149292154
134
+ name: Cosine Mrr@5
135
+ - type: cosine_mrr@10
136
+ value: 0.8687695348409635
137
+ name: Cosine Mrr@10
138
+ - type: cosine_mrr@100
139
+ value: 0.8700193430588538
140
+ name: Cosine Mrr@100
141
+ - type: cosine_map@100
142
+ value: 0.8700193430588539
143
+ name: Cosine Map@100
144
+ ---
145
+
146
+ # SentenceTransformer based on intfloat/multilingual-e5-large
147
+
148
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the [word_embedding](https://huggingface.co/datasets/meandyou200175/word_embedding) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
149
+
150
+ ## Model Details
151
+
152
+ ### Model Description
153
+ - **Model Type:** Sentence Transformer
154
+ - **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision 0dc5580a448e4284468b8909bae50fa925907bc5 -->
155
+ - **Maximum Sequence Length:** 512 tokens
156
+ - **Output Dimensionality:** 1024 dimensions
157
+ - **Similarity Function:** Cosine Similarity
158
+ - **Training Dataset:**
159
+ - [word_embedding](https://huggingface.co/datasets/meandyou200175/word_embedding)
160
+ <!-- - **Language:** Unknown -->
161
+ <!-- - **License:** Unknown -->
162
+
163
+ ### Model Sources
164
+
165
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
166
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
167
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
168
+
169
+ ### Full Model Architecture
170
+
171
+ ```
172
+ SentenceTransformer(
173
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
174
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
175
+ (2): Normalize()
176
+ )
177
+ ```
178
+
179
+ ## Usage
180
+
181
+ ### Direct Usage (Sentence Transformers)
182
+
183
+ First install the Sentence Transformers library:
184
+
185
+ ```bash
186
+ pip install -U sentence-transformers
187
+ ```
188
+
189
+ Then you can load this model and run inference.
190
+ ```python
191
+ from sentence_transformers import SentenceTransformer
192
+
193
+ # Download from the 🤗 Hub
194
+ model = SentenceTransformer("meandyou200175/e5_large_finetune_word")
195
+ # Run inference
196
+ sentences = [
197
+ 'A long appendage protruding from the lower back. Often covered in fur or scales. A common feature of animal girls.',
198
+ 'tail',
199
+ 'stomach day',
200
+ ]
201
+ embeddings = model.encode(sentences)
202
+ print(embeddings.shape)
203
+ # [3, 1024]
204
+
205
+ # Get the similarity scores for the embeddings
206
+ similarities = model.similarity(embeddings, embeddings)
207
+ print(similarities.shape)
208
+ # [3, 3]
209
+ ```
210
+
211
+ <!--
212
+ ### Direct Usage (Transformers)
213
+
214
+ <details><summary>Click to see the direct usage in Transformers</summary>
215
+
216
+ </details>
217
+ -->
218
+
219
+ <!--
220
+ ### Downstream Usage (Sentence Transformers)
221
+
222
+ You can finetune this model on your own dataset.
223
+
224
+ <details><summary>Click to expand</summary>
225
+
226
+ </details>
227
+ -->
228
+
229
+ <!--
230
+ ### Out-of-Scope Use
231
+
232
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
233
+ -->
234
+
235
+ ## Evaluation
236
+
237
+ ### Metrics
238
+
239
+ #### Information Retrieval
240
+
241
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
242
+
243
+ | Metric | Value |
244
+ |:---------------------|:-----------|
245
+ | cosine_accuracy@1 | 0.8108 |
246
+ | cosine_accuracy@2 | 0.8958 |
247
+ | cosine_accuracy@5 | 0.9382 |
248
+ | cosine_accuracy@10 | 0.9643 |
249
+ | cosine_accuracy@100 | 0.9932 |
250
+ | cosine_precision@1 | 0.8108 |
251
+ | cosine_precision@2 | 0.4479 |
252
+ | cosine_precision@5 | 0.1876 |
253
+ | cosine_precision@10 | 0.0964 |
254
+ | cosine_precision@100 | 0.0099 |
255
+ | cosine_recall@1 | 0.8108 |
256
+ | cosine_recall@2 | 0.8958 |
257
+ | cosine_recall@5 | 0.9382 |
258
+ | cosine_recall@10 | 0.9643 |
259
+ | cosine_recall@100 | 0.9932 |
260
+ | **cosine_ndcg@10** | **0.8923** |
261
+ | cosine_mrr@1 | 0.8108 |
262
+ | cosine_mrr@2 | 0.8533 |
263
+ | cosine_mrr@5 | 0.8649 |
264
+ | cosine_mrr@10 | 0.8688 |
265
+ | cosine_mrr@100 | 0.87 |
266
+ | cosine_map@100 | 0.87 |
267
+
268
+ <!--
269
+ ## Bias, Risks and Limitations
270
+
271
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
272
+ -->
273
+
274
+ <!--
275
+ ### Recommendations
276
+
277
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
278
+ -->
279
+
280
+ ## Training Details
281
+
282
+ ### Training Dataset
283
+
284
+ #### word_embedding
285
+
286
+ * Dataset: [word_embedding](https://huggingface.co/datasets/meandyou200175/word_embedding) at [af76b11](https://huggingface.co/datasets/meandyou200175/word_embedding/tree/af76b11c1d93542ca76e864a60b1744d5e02b099)
287
+ * Size: 9,316 training samples
288
+ * Columns: <code>query</code> and <code>positive</code>
289
+ * Approximate statistics based on the first 1000 samples:
290
+ | | query | positive |
291
+ |:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
292
+ | type | string | string |
293
+ | details | <ul><li>min: 3 tokens</li><li>mean: 36.54 tokens</li><li>max: 177 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.3 tokens</li><li>max: 13 tokens</li></ul> |
294
+ * Samples:
295
+ | query | positive |
296
+ |:------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------|
297
+ | <code>Eyewear shaped like a semicircle.</code> | <code>semi-circular eyewear</code> |
298
+ | <code>A handheld electric appliance used fordryingand styling hair.</code> | <code>hair dryer</code> |
299
+ | <code>When onebreastis exposed while the other remains covered or confined by clothing. Seebreasts outfor when both breasts are exposed.</code> | <code>one breast out</code> |
300
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
301
+ ```json
302
+ {
303
+ "scale": 20.0,
304
+ "similarity_fct": "cos_sim"
305
+ }
306
+ ```
307
+
308
+ ### Evaluation Dataset
309
+
310
+ #### word_embedding
311
+
312
+ * Dataset: [word_embedding](https://huggingface.co/datasets/meandyou200175/word_embedding) at [af76b11](https://huggingface.co/datasets/meandyou200175/word_embedding/tree/af76b11c1d93542ca76e864a60b1744d5e02b099)
313
+ * Size: 1,036 evaluation samples
314
+ * Columns: <code>query</code> and <code>positive</code>
315
+ * Approximate statistics based on the first 1000 samples:
316
+ | | query | positive |
317
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
318
+ | type | string | string |
319
+ | details | <ul><li>min: 4 tokens</li><li>mean: 35.89 tokens</li><li>max: 164 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.38 tokens</li><li>max: 14 tokens</li></ul> |
320
+ * Samples:
321
+ | query | positive |
322
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------|
323
+ | <code>A machine that manipulates data according to a list of instructions. The ability to store and execute lists of instructions called programs make computers extremely versatile. On Danbooru's images they are most often used fordrawing,playing gamesand accessing theinternet.</code> | <code>computer</code> |
324
+ | <code>Aplaying cardwith twoclubs.</code> | <code>two of clubs</code> |
325
+ | <code>Yebisu (ヱビス, Ebisu) is a beer produced bySapporo Breweries. It is one of Japan's oldest brands, first being brewed in Tokyo in 1890 by the Japan Beer Brewery Company.</code> | <code>yebisu</code> |
326
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
327
+ ```json
328
+ {
329
+ "scale": 20.0,
330
+ "similarity_fct": "cos_sim"
331
+ }
332
+ ```
333
+
334
+ ### Training Hyperparameters
335
+ #### Non-Default Hyperparameters
336
+
337
+ - `eval_strategy`: steps
338
+ - `per_device_train_batch_size`: 16
339
+ - `per_device_eval_batch_size`: 16
340
+ - `learning_rate`: 2e-05
341
+ - `num_train_epochs`: 5
342
+ - `warmup_ratio`: 0.1
343
+ - `fp16`: True
344
+ - `batch_sampler`: no_duplicates
345
+
346
+ #### All Hyperparameters
347
+ <details><summary>Click to expand</summary>
348
+
349
+ - `overwrite_output_dir`: False
350
+ - `do_predict`: False
351
+ - `eval_strategy`: steps
352
+ - `prediction_loss_only`: True
353
+ - `per_device_train_batch_size`: 16
354
+ - `per_device_eval_batch_size`: 16
355
+ - `per_gpu_train_batch_size`: None
356
+ - `per_gpu_eval_batch_size`: None
357
+ - `gradient_accumulation_steps`: 1
358
+ - `eval_accumulation_steps`: None
359
+ - `torch_empty_cache_steps`: None
360
+ - `learning_rate`: 2e-05
361
+ - `weight_decay`: 0.0
362
+ - `adam_beta1`: 0.9
363
+ - `adam_beta2`: 0.999
364
+ - `adam_epsilon`: 1e-08
365
+ - `max_grad_norm`: 1.0
366
+ - `num_train_epochs`: 5
367
+ - `max_steps`: -1
368
+ - `lr_scheduler_type`: linear
369
+ - `lr_scheduler_kwargs`: {}
370
+ - `warmup_ratio`: 0.1
371
+ - `warmup_steps`: 0
372
+ - `log_level`: passive
373
+ - `log_level_replica`: warning
374
+ - `log_on_each_node`: True
375
+ - `logging_nan_inf_filter`: True
376
+ - `save_safetensors`: True
377
+ - `save_on_each_node`: False
378
+ - `save_only_model`: False
379
+ - `restore_callback_states_from_checkpoint`: False
380
+ - `no_cuda`: False
381
+ - `use_cpu`: False
382
+ - `use_mps_device`: False
383
+ - `seed`: 42
384
+ - `data_seed`: None
385
+ - `jit_mode_eval`: False
386
+ - `use_ipex`: False
387
+ - `bf16`: False
388
+ - `fp16`: True
389
+ - `fp16_opt_level`: O1
390
+ - `half_precision_backend`: auto
391
+ - `bf16_full_eval`: False
392
+ - `fp16_full_eval`: False
393
+ - `tf32`: None
394
+ - `local_rank`: 0
395
+ - `ddp_backend`: None
396
+ - `tpu_num_cores`: None
397
+ - `tpu_metrics_debug`: False
398
+ - `debug`: []
399
+ - `dataloader_drop_last`: False
400
+ - `dataloader_num_workers`: 0
401
+ - `dataloader_prefetch_factor`: None
402
+ - `past_index`: -1
403
+ - `disable_tqdm`: False
404
+ - `remove_unused_columns`: True
405
+ - `label_names`: None
406
+ - `load_best_model_at_end`: False
407
+ - `ignore_data_skip`: False
408
+ - `fsdp`: []
409
+ - `fsdp_min_num_params`: 0
410
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
411
+ - `tp_size`: 0
412
+ - `fsdp_transformer_layer_cls_to_wrap`: None
413
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
414
+ - `deepspeed`: None
415
+ - `label_smoothing_factor`: 0.0
416
+ - `optim`: adamw_torch
417
+ - `optim_args`: None
418
+ - `adafactor`: False
419
+ - `group_by_length`: False
420
+ - `length_column_name`: length
421
+ - `ddp_find_unused_parameters`: None
422
+ - `ddp_bucket_cap_mb`: None
423
+ - `ddp_broadcast_buffers`: False
424
+ - `dataloader_pin_memory`: True
425
+ - `dataloader_persistent_workers`: False
426
+ - `skip_memory_metrics`: True
427
+ - `use_legacy_prediction_loop`: False
428
+ - `push_to_hub`: False
429
+ - `resume_from_checkpoint`: None
430
+ - `hub_model_id`: None
431
+ - `hub_strategy`: every_save
432
+ - `hub_private_repo`: None
433
+ - `hub_always_push`: False
434
+ - `gradient_checkpointing`: False
435
+ - `gradient_checkpointing_kwargs`: None
436
+ - `include_inputs_for_metrics`: False
437
+ - `include_for_metrics`: []
438
+ - `eval_do_concat_batches`: True
439
+ - `fp16_backend`: auto
440
+ - `push_to_hub_model_id`: None
441
+ - `push_to_hub_organization`: None
442
+ - `mp_parameters`:
443
+ - `auto_find_batch_size`: False
444
+ - `full_determinism`: False
445
+ - `torchdynamo`: None
446
+ - `ray_scope`: last
447
+ - `ddp_timeout`: 1800
448
+ - `torch_compile`: False
449
+ - `torch_compile_backend`: None
450
+ - `torch_compile_mode`: None
451
+ - `include_tokens_per_second`: False
452
+ - `include_num_input_tokens_seen`: False
453
+ - `neftune_noise_alpha`: None
454
+ - `optim_target_modules`: None
455
+ - `batch_eval_metrics`: False
456
+ - `eval_on_start`: False
457
+ - `use_liger_kernel`: False
458
+ - `eval_use_gather_object`: False
459
+ - `average_tokens_across_devices`: False
460
+ - `prompts`: None
461
+ - `batch_sampler`: no_duplicates
462
+ - `multi_dataset_batch_sampler`: proportional
463
+
464
+ </details>
465
+
466
+ ### Training Logs
467
+ | Epoch | Step | Training Loss | Validation Loss | cosine_ndcg@10 |
468
+ |:------:|:----:|:-------------:|:---------------:|:--------------:|
469
+ | -1 | -1 | - | - | 0.7166 |
470
+ | 0.1715 | 100 | 0.8892 | - | - |
471
+ | 0.3431 | 200 | 0.1724 | - | - |
472
+ | 0.5146 | 300 | 0.1783 | - | - |
473
+ | 0.6861 | 400 | 0.1393 | - | - |
474
+ | 0.8576 | 500 | 0.1262 | - | - |
475
+ | 1.0292 | 600 | 0.1046 | - | - |
476
+ | 1.2007 | 700 | 0.0639 | - | - |
477
+ | 1.3722 | 800 | 0.0692 | - | - |
478
+ | 1.5437 | 900 | 0.043 | - | - |
479
+ | 1.7153 | 1000 | 0.0614 | 0.0819 | 0.8774 |
480
+ | 1.8868 | 1100 | 0.0538 | - | - |
481
+ | 2.0583 | 1200 | 0.0414 | - | - |
482
+ | 2.2298 | 1300 | 0.0146 | - | - |
483
+ | 2.4014 | 1400 | 0.0164 | - | - |
484
+ | 2.5729 | 1500 | 0.0225 | - | - |
485
+ | 2.7444 | 1600 | 0.0215 | - | - |
486
+ | 2.9160 | 1700 | 0.0271 | - | - |
487
+ | 3.0875 | 1800 | 0.0202 | - | - |
488
+ | 3.2590 | 1900 | 0.0194 | - | - |
489
+ | 3.4305 | 2000 | 0.0144 | 0.0682 | 0.8923 |
490
+ | 3.6021 | 2100 | 0.0118 | - | - |
491
+ | 3.7736 | 2200 | 0.0155 | - | - |
492
+ | 3.9451 | 2300 | 0.0177 | - | - |
493
+ | 4.1166 | 2400 | 0.0059 | - | - |
494
+ | 4.2882 | 2500 | 0.0099 | - | - |
495
+ | 4.4597 | 2600 | 0.0056 | - | - |
496
+ | 4.6312 | 2700 | 0.0153 | - | - |
497
+ | 4.8027 | 2800 | 0.0069 | - | - |
498
+ | 4.9743 | 2900 | 0.01 | - | - |
499
+
500
+
501
+ ### Framework Versions
502
+ - Python: 3.11.11
503
+ - Sentence Transformers: 3.4.1
504
+ - Transformers: 4.51.1
505
+ - PyTorch: 2.5.1+cu124
506
+ - Accelerate: 1.3.0
507
+ - Datasets: 3.5.0
508
+ - Tokenizers: 0.21.0
509
+
510
+ ## Citation
511
+
512
+ ### BibTeX
513
+
514
+ #### Sentence Transformers
515
+ ```bibtex
516
+ @inproceedings{reimers-2019-sentence-bert,
517
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
518
+ author = "Reimers, Nils and Gurevych, Iryna",
519
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
520
+ month = "11",
521
+ year = "2019",
522
+ publisher = "Association for Computational Linguistics",
523
+ url = "https://arxiv.org/abs/1908.10084",
524
+ }
525
+ ```
526
+
527
+ #### MultipleNegativesRankingLoss
528
+ ```bibtex
529
+ @misc{henderson2017efficient,
530
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
531
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
532
+ year={2017},
533
+ eprint={1705.00652},
534
+ archivePrefix={arXiv},
535
+ primaryClass={cs.CL}
536
+ }
537
+ ```
538
+
539
+ <!--
540
+ ## Glossary
541
+
542
+ *Clearly define terms in order to be accessible across audiences.*
543
+ -->
544
+
545
+ <!--
546
+ ## Model Card Authors
547
+
548
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
549
+ -->
550
+
551
+ <!--
552
+ ## Model Card Contact
553
+
554
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
555
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "xlm-roberta",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "output_past": true,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.51.1",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 250002
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.51.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24854dafae65ef24432ea85eb056628daff94e85bcb8d60730361305c68126c1
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 512,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }