SentenceTransformer based on intfloat/multilingual-e5-large
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("meandyou200175/e5_large_finetune_word")
# Run inference
sentences = [
'A long appendage protruding from the lower back. Often covered in fur or scales. A common feature of animal girls.',
'tail',
'stomach day',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9073 |
cosine_accuracy@2 | 0.9739 |
cosine_accuracy@5 | 0.9942 |
cosine_accuracy@10 | 0.999 |
cosine_accuracy@100 | 1.0 |
cosine_precision@1 | 0.9073 |
cosine_precision@2 | 0.487 |
cosine_precision@5 | 0.1988 |
cosine_precision@10 | 0.0999 |
cosine_precision@100 | 0.01 |
cosine_recall@1 | 0.9073 |
cosine_recall@2 | 0.9739 |
cosine_recall@5 | 0.9942 |
cosine_recall@10 | 0.999 |
cosine_recall@100 | 1.0 |
cosine_ndcg@10 | 0.9602 |
cosine_mrr@1 | 0.9073 |
cosine_mrr@2 | 0.9406 |
cosine_mrr@5 | 0.9463 |
cosine_mrr@10 | 0.947 |
cosine_mrr@100 | 0.9471 |
cosine_map@100 | 0.9471 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,356 training samples
- Columns:
query
andpositive
- Approximate statistics based on the first 1000 samples:
query positive type string string details - min: 3 tokens
- mean: 36.54 tokens
- max: 177 tokens
- min: 3 tokens
- mean: 5.3 tokens
- max: 13 tokens
- Samples:
query positive Eyewear shaped like a semicircle.
semi-circular eyewear
A handheld electric appliance used fordryingand styling hair.
hair dryer
When onebreastis exposed while the other remains covered or confined by clothing. Seebreasts outfor when both breasts are exposed.
one breast out
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
word_embedding
- Dataset: word_embedding at af76b11
- Size: 1,036 evaluation samples
- Columns:
query
andpositive
- Approximate statistics based on the first 1000 samples:
query positive type string string details - min: 4 tokens
- mean: 35.89 tokens
- max: 164 tokens
- min: 3 tokens
- mean: 5.38 tokens
- max: 14 tokens
- Samples:
query positive A machine that manipulates data according to a list of instructions. The ability to store and execute lists of instructions called programs make computers extremely versatile. On Danbooru's images they are most often used fordrawing,playing gamesand accessing theinternet.
computer
Aplaying cardwith twoclubs.
two of clubs
Yebisu (ヱビス, Ebisu) is a beer produced bySapporo Breweries. It is one of Japan's oldest brands, first being brewed in Tokyo in 1890 by the Japan Beer Brewery Company.
yebisu
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | cosine_ndcg@10 |
---|---|---|---|---|
-1 | -1 | - | - | 0.7166 |
0.1543 | 100 | 0.9191 | - | - |
0.3086 | 200 | 0.1876 | - | - |
0.4630 | 300 | 0.1547 | - | - |
0.6173 | 400 | 0.1556 | - | - |
0.7716 | 500 | 0.179 | - | - |
0.9259 | 600 | 0.1234 | - | - |
1.0802 | 700 | 0.087 | - | - |
1.2346 | 800 | 0.0576 | - | - |
1.3889 | 900 | 0.0564 | - | - |
1.5432 | 1000 | 0.0583 | 0.0271 | 0.9198 |
1.6975 | 1100 | 0.0764 | - | - |
1.8519 | 1200 | 0.0493 | - | - |
2.0062 | 1300 | 0.0481 | - | - |
2.1605 | 1400 | 0.0222 | - | - |
2.3148 | 1500 | 0.0234 | - | - |
2.4691 | 1600 | 0.0283 | - | - |
2.6235 | 1700 | 0.0236 | - | - |
2.7778 | 1800 | 0.026 | - | - |
2.9321 | 1900 | 0.0217 | - | - |
3.0864 | 2000 | 0.0193 | 0.0061 | 0.9534 |
3.2407 | 2100 | 0.0135 | - | - |
3.3951 | 2200 | 0.0162 | - | - |
3.5494 | 2300 | 0.0109 | - | - |
3.7037 | 2400 | 0.0107 | - | - |
3.8580 | 2500 | 0.0105 | - | - |
4.0123 | 2600 | 0.0095 | - | - |
4.1667 | 2700 | 0.0146 | - | - |
4.3210 | 2800 | 0.0102 | - | - |
4.4753 | 2900 | 0.0108 | - | - |
4.6296 | 3000 | 0.01 | 0.0061 | 0.9602 |
4.7840 | 3100 | 0.008 | - | - |
4.9383 | 3200 | 0.0117 | - | - |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.51.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.5.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 226
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for meandyou200175/e5_large_finetune_word
Base model
intfloat/multilingual-e5-largeDataset used to train meandyou200175/e5_large_finetune_word
Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.907
- Cosine Accuracy@2 on Unknownself-reported0.974
- Cosine Accuracy@5 on Unknownself-reported0.994
- Cosine Accuracy@10 on Unknownself-reported0.999
- Cosine Accuracy@100 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.907
- Cosine Precision@2 on Unknownself-reported0.487
- Cosine Precision@5 on Unknownself-reported0.199
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Precision@100 on Unknownself-reported0.010