metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10356
- loss:MultipleNegativesRankingLoss
base_model: intfloat/multilingual-e5-large
widget:
- source_sentence: >-
Horn band legwearis a type oflegwear, oftenthighhighs, with
ahornedcharacter design along the upper band.
sentences:
- horn band legwear
- head out of frame
- sweatpants
- source_sentence: >-
When a character is looping the laces of theiruntied shoelacesinto a
sturdy bow.
sentences:
- hair tie
- tying footwear
- loose necktie
- source_sentence: >-
Use this tag if the person's eyewear isremovedfrom their usual place and
carried in the hands. If it still rests on the bridge of the nose or head,
seeadjusting eyewearand its related tags.
sentences:
- cow costume
- sarong
- holding removed eyewear
- source_sentence: When both of a character's hands are on another character'sthighs.
sentences:
- baking
- triplets
- hands on another's thighs
- source_sentence: >-
A long appendage protruding from the lower back. Often covered in fur or
scales. A common feature of animal girls.
sentences:
- tail
- grey-framed eyewear
- stomach day
datasets:
- meandyou200175/word_embedding
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@2
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_accuracy@100
- cosine_precision@1
- cosine_precision@2
- cosine_precision@5
- cosine_precision@10
- cosine_precision@100
- cosine_recall@1
- cosine_recall@2
- cosine_recall@5
- cosine_recall@10
- cosine_recall@100
- cosine_ndcg@10
- cosine_mrr@1
- cosine_mrr@2
- cosine_mrr@5
- cosine_mrr@10
- cosine_mrr@100
- cosine_map@100
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-large
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9073359073359073
name: Cosine Accuracy@1
- type: cosine_accuracy@2
value: 0.9739382239382239
name: Cosine Accuracy@2
- type: cosine_accuracy@5
value: 0.9942084942084942
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.999034749034749
name: Cosine Accuracy@10
- type: cosine_accuracy@100
value: 1
name: Cosine Accuracy@100
- type: cosine_precision@1
value: 0.9073359073359073
name: Cosine Precision@1
- type: cosine_precision@2
value: 0.48696911196911197
name: Cosine Precision@2
- type: cosine_precision@5
value: 0.19884169884169883
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0999034749034749
name: Cosine Precision@10
- type: cosine_precision@100
value: 0.010000000000000002
name: Cosine Precision@100
- type: cosine_recall@1
value: 0.9073359073359073
name: Cosine Recall@1
- type: cosine_recall@2
value: 0.9739382239382239
name: Cosine Recall@2
- type: cosine_recall@5
value: 0.9942084942084942
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.999034749034749
name: Cosine Recall@10
- type: cosine_recall@100
value: 1
name: Cosine Recall@100
- type: cosine_ndcg@10
value: 0.9601842774877813
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.9073359073359073
name: Cosine Mrr@1
- type: cosine_mrr@2
value: 0.9406370656370656
name: Cosine Mrr@2
- type: cosine_mrr@5
value: 0.9462837837837839
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.946988570202856
name: Cosine Mrr@10
- type: cosine_mrr@100
value: 0.9470763202906061
name: Cosine Mrr@100
- type: cosine_map@100
value: 0.9470763202906061
name: Cosine Map@100
SentenceTransformer based on intfloat/multilingual-e5-large
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("meandyou200175/e5_large_finetune_word")
# Run inference
sentences = [
'A long appendage protruding from the lower back. Often covered in fur or scales. A common feature of animal girls.',
'tail',
'stomach day',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9073 |
cosine_accuracy@2 | 0.9739 |
cosine_accuracy@5 | 0.9942 |
cosine_accuracy@10 | 0.999 |
cosine_accuracy@100 | 1.0 |
cosine_precision@1 | 0.9073 |
cosine_precision@2 | 0.487 |
cosine_precision@5 | 0.1988 |
cosine_precision@10 | 0.0999 |
cosine_precision@100 | 0.01 |
cosine_recall@1 | 0.9073 |
cosine_recall@2 | 0.9739 |
cosine_recall@5 | 0.9942 |
cosine_recall@10 | 0.999 |
cosine_recall@100 | 1.0 |
cosine_ndcg@10 | 0.9602 |
cosine_mrr@1 | 0.9073 |
cosine_mrr@2 | 0.9406 |
cosine_mrr@5 | 0.9463 |
cosine_mrr@10 | 0.947 |
cosine_mrr@100 | 0.9471 |
cosine_map@100 | 0.9471 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,356 training samples
- Columns:
query
andpositive
- Approximate statistics based on the first 1000 samples:
query positive type string string details - min: 3 tokens
- mean: 36.54 tokens
- max: 177 tokens
- min: 3 tokens
- mean: 5.3 tokens
- max: 13 tokens
- Samples:
query positive Eyewear shaped like a semicircle.
semi-circular eyewear
A handheld electric appliance used fordryingand styling hair.
hair dryer
When onebreastis exposed while the other remains covered or confined by clothing. Seebreasts outfor when both breasts are exposed.
one breast out
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
word_embedding
- Dataset: word_embedding at af76b11
- Size: 1,036 evaluation samples
- Columns:
query
andpositive
- Approximate statistics based on the first 1000 samples:
query positive type string string details - min: 4 tokens
- mean: 35.89 tokens
- max: 164 tokens
- min: 3 tokens
- mean: 5.38 tokens
- max: 14 tokens
- Samples:
query positive A machine that manipulates data according to a list of instructions. The ability to store and execute lists of instructions called programs make computers extremely versatile. On Danbooru's images they are most often used fordrawing,playing gamesand accessing theinternet.
computer
Aplaying cardwith twoclubs.
two of clubs
Yebisu (ヱビス, Ebisu) is a beer produced bySapporo Breweries. It is one of Japan's oldest brands, first being brewed in Tokyo in 1890 by the Japan Beer Brewery Company.
yebisu
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | cosine_ndcg@10 |
---|---|---|---|---|
-1 | -1 | - | - | 0.7166 |
0.1543 | 100 | 0.9191 | - | - |
0.3086 | 200 | 0.1876 | - | - |
0.4630 | 300 | 0.1547 | - | - |
0.6173 | 400 | 0.1556 | - | - |
0.7716 | 500 | 0.179 | - | - |
0.9259 | 600 | 0.1234 | - | - |
1.0802 | 700 | 0.087 | - | - |
1.2346 | 800 | 0.0576 | - | - |
1.3889 | 900 | 0.0564 | - | - |
1.5432 | 1000 | 0.0583 | 0.0271 | 0.9198 |
1.6975 | 1100 | 0.0764 | - | - |
1.8519 | 1200 | 0.0493 | - | - |
2.0062 | 1300 | 0.0481 | - | - |
2.1605 | 1400 | 0.0222 | - | - |
2.3148 | 1500 | 0.0234 | - | - |
2.4691 | 1600 | 0.0283 | - | - |
2.6235 | 1700 | 0.0236 | - | - |
2.7778 | 1800 | 0.026 | - | - |
2.9321 | 1900 | 0.0217 | - | - |
3.0864 | 2000 | 0.0193 | 0.0061 | 0.9534 |
3.2407 | 2100 | 0.0135 | - | - |
3.3951 | 2200 | 0.0162 | - | - |
3.5494 | 2300 | 0.0109 | - | - |
3.7037 | 2400 | 0.0107 | - | - |
3.8580 | 2500 | 0.0105 | - | - |
4.0123 | 2600 | 0.0095 | - | - |
4.1667 | 2700 | 0.0146 | - | - |
4.3210 | 2800 | 0.0102 | - | - |
4.4753 | 2900 | 0.0108 | - | - |
4.6296 | 3000 | 0.01 | 0.0061 | 0.9602 |
4.7840 | 3100 | 0.008 | - | - |
4.9383 | 3200 | 0.0117 | - | - |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.51.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.5.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}