meandyou200175's picture
Add new SentenceTransformer model
f465c13 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10356
  - loss:MultipleNegativesRankingLoss
base_model: intfloat/multilingual-e5-large
widget:
  - source_sentence: >-
      Horn band legwearis a type oflegwear, oftenthighhighs, with
      ahornedcharacter design along the upper band.
    sentences:
      - horn band legwear
      - head out of frame
      - sweatpants
  - source_sentence: >-
      When a character is looping the laces of theiruntied shoelacesinto a
      sturdy bow.
    sentences:
      - hair tie
      - tying footwear
      - loose necktie
  - source_sentence: >-
      Use this tag if the person's eyewear isremovedfrom their usual place and
      carried in the hands. If it still rests on the bridge of the nose or head,
      seeadjusting eyewearand its related tags.
    sentences:
      - cow costume
      - sarong
      - holding removed eyewear
  - source_sentence: When both of a character's hands are on another character'sthighs.
    sentences:
      - baking
      - triplets
      - hands on another's thighs
  - source_sentence: >-
      A long appendage protruding from the lower back. Often covered in fur or
      scales. A common feature of animal girls.
    sentences:
      - tail
      - grey-framed eyewear
      - stomach day
datasets:
  - meandyou200175/word_embedding
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@2
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_accuracy@100
  - cosine_precision@1
  - cosine_precision@2
  - cosine_precision@5
  - cosine_precision@10
  - cosine_precision@100
  - cosine_recall@1
  - cosine_recall@2
  - cosine_recall@5
  - cosine_recall@10
  - cosine_recall@100
  - cosine_ndcg@10
  - cosine_mrr@1
  - cosine_mrr@2
  - cosine_mrr@5
  - cosine_mrr@10
  - cosine_mrr@100
  - cosine_map@100
model-index:
  - name: SentenceTransformer based on intfloat/multilingual-e5-large
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy@1
            value: 0.9073359073359073
            name: Cosine Accuracy@1
          - type: cosine_accuracy@2
            value: 0.9739382239382239
            name: Cosine Accuracy@2
          - type: cosine_accuracy@5
            value: 0.9942084942084942
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.999034749034749
            name: Cosine Accuracy@10
          - type: cosine_accuracy@100
            value: 1
            name: Cosine Accuracy@100
          - type: cosine_precision@1
            value: 0.9073359073359073
            name: Cosine Precision@1
          - type: cosine_precision@2
            value: 0.48696911196911197
            name: Cosine Precision@2
          - type: cosine_precision@5
            value: 0.19884169884169883
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0999034749034749
            name: Cosine Precision@10
          - type: cosine_precision@100
            value: 0.010000000000000002
            name: Cosine Precision@100
          - type: cosine_recall@1
            value: 0.9073359073359073
            name: Cosine Recall@1
          - type: cosine_recall@2
            value: 0.9739382239382239
            name: Cosine Recall@2
          - type: cosine_recall@5
            value: 0.9942084942084942
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.999034749034749
            name: Cosine Recall@10
          - type: cosine_recall@100
            value: 1
            name: Cosine Recall@100
          - type: cosine_ndcg@10
            value: 0.9601842774877813
            name: Cosine Ndcg@10
          - type: cosine_mrr@1
            value: 0.9073359073359073
            name: Cosine Mrr@1
          - type: cosine_mrr@2
            value: 0.9406370656370656
            name: Cosine Mrr@2
          - type: cosine_mrr@5
            value: 0.9462837837837839
            name: Cosine Mrr@5
          - type: cosine_mrr@10
            value: 0.946988570202856
            name: Cosine Mrr@10
          - type: cosine_mrr@100
            value: 0.9470763202906061
            name: Cosine Mrr@100
          - type: cosine_map@100
            value: 0.9470763202906061
            name: Cosine Map@100

SentenceTransformer based on intfloat/multilingual-e5-large

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-large
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("meandyou200175/e5_large_finetune_word")
# Run inference
sentences = [
    'A long appendage protruding from the lower back. Often covered in fur or scales. A common feature of animal girls.',
    'tail',
    'stomach day',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.9073
cosine_accuracy@2 0.9739
cosine_accuracy@5 0.9942
cosine_accuracy@10 0.999
cosine_accuracy@100 1.0
cosine_precision@1 0.9073
cosine_precision@2 0.487
cosine_precision@5 0.1988
cosine_precision@10 0.0999
cosine_precision@100 0.01
cosine_recall@1 0.9073
cosine_recall@2 0.9739
cosine_recall@5 0.9942
cosine_recall@10 0.999
cosine_recall@100 1.0
cosine_ndcg@10 0.9602
cosine_mrr@1 0.9073
cosine_mrr@2 0.9406
cosine_mrr@5 0.9463
cosine_mrr@10 0.947
cosine_mrr@100 0.9471
cosine_map@100 0.9471

Training Details

Training Dataset

Unnamed Dataset

  • Size: 10,356 training samples
  • Columns: query and positive
  • Approximate statistics based on the first 1000 samples:
    query positive
    type string string
    details
    • min: 3 tokens
    • mean: 36.54 tokens
    • max: 177 tokens
    • min: 3 tokens
    • mean: 5.3 tokens
    • max: 13 tokens
  • Samples:
    query positive
    Eyewear shaped like a semicircle. semi-circular eyewear
    A handheld electric appliance used fordryingand styling hair. hair dryer
    When onebreastis exposed while the other remains covered or confined by clothing. Seebreasts outfor when both breasts are exposed. one breast out
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

word_embedding

  • Dataset: word_embedding at af76b11
  • Size: 1,036 evaluation samples
  • Columns: query and positive
  • Approximate statistics based on the first 1000 samples:
    query positive
    type string string
    details
    • min: 4 tokens
    • mean: 35.89 tokens
    • max: 164 tokens
    • min: 3 tokens
    • mean: 5.38 tokens
    • max: 14 tokens
  • Samples:
    query positive
    A machine that manipulates data according to a list of instructions. The ability to store and execute lists of instructions called programs make computers extremely versatile. On Danbooru's images they are most often used fordrawing,playing gamesand accessing theinternet. computer
    Aplaying cardwith twoclubs. two of clubs
    Yebisu (ヱビス, Ebisu) is a beer produced bySapporo Breweries. It is one of Japan's oldest brands, first being brewed in Tokyo in 1890 by the Japan Beer Brewery Company. yebisu
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss cosine_ndcg@10
-1 -1 - - 0.7166
0.1543 100 0.9191 - -
0.3086 200 0.1876 - -
0.4630 300 0.1547 - -
0.6173 400 0.1556 - -
0.7716 500 0.179 - -
0.9259 600 0.1234 - -
1.0802 700 0.087 - -
1.2346 800 0.0576 - -
1.3889 900 0.0564 - -
1.5432 1000 0.0583 0.0271 0.9198
1.6975 1100 0.0764 - -
1.8519 1200 0.0493 - -
2.0062 1300 0.0481 - -
2.1605 1400 0.0222 - -
2.3148 1500 0.0234 - -
2.4691 1600 0.0283 - -
2.6235 1700 0.0236 - -
2.7778 1800 0.026 - -
2.9321 1900 0.0217 - -
3.0864 2000 0.0193 0.0061 0.9534
3.2407 2100 0.0135 - -
3.3951 2200 0.0162 - -
3.5494 2300 0.0109 - -
3.7037 2400 0.0107 - -
3.8580 2500 0.0105 - -
4.0123 2600 0.0095 - -
4.1667 2700 0.0146 - -
4.3210 2800 0.0102 - -
4.4753 2900 0.0108 - -
4.6296 3000 0.01 0.0061 0.9602
4.7840 3100 0.008 - -
4.9383 3200 0.0117 - -

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.51.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}